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Abstract 
Hydraulic manipulator arms are commonly used for a variety of underwater tasks requiring a 
high degree of both strength and dexterity, ranging from scientific tasks such as capturing 
delicate live organisms or sampling hydrothermal vent fluids to maintenance tasks including 
pipeline and dam inspection. Accurately knowing the position and orientation of a manipulator’s 
end effector with respect to objects in its environment is essential for automating manipulation, 
which is key for increasing both the range and complexity of sampling or maintenance tasks. 
While a lot of prior work has been completed in this space, the need remains for a calibration 
process to characterize the relationship between raw feedback from joint angle sensors and 
actual manipulator joint angles - particularly in situations where this relationship is dynamic and 
needs to be calibrated in remote environments.  
 
In this work, we propose two different calibration methods to simultaneously compute the joint 
sensor offset and gains for a 6 degree-of-freedom manipulator based on input from a calibrated 
wrist-mounted camera. The accuracy and robustness to different levels of measurement 
uncertainty are analyzed for both methods and are presented in this report.  

Background 
Context 
Manipulator arms are a common solution to completing dexterous tasks, especially when 
completing such tasks require enduring harsh environmental conditions or demand for 
significant physical strength. In the marine sciences space, hydraulic manipulator arms are often 
installed on deep submergence vehicles [1] like the HROV Nereid Under Ice [2], the DSV Alvin, 
or the ROV Jason [3] to collect samples critical to forwarding our understanding of the Earth’s 
oceans. Whether it’s capturing delicate live organisms [4] [5] [6], sampling hydrothermal vent 
fluids [7], or using a suction sampler to collect microbes in environments [6], these tasks require 
dexterity in depths far deeper than scuba divers can operate in. However difficult, it’s important 
to find a means of collecting these samples since they can provide us with a wealth of 
information ranging from impacts of natural disasters to new sources of widely used minerals 
scarce in terrestrial environments. 
 



 

Although the importance of studying the world’s oceans cannot be understated, more than 
eighty percent of our ocean remains unexplored [8]. This is likely attributed to the fact that 
operating in deep-sea environments poses a unique set of challenging environmental factors, 
including but not limited to extreme pressures [9], scattering of light [5], and a wide range of 
temperatures. This environment also poses some technological challenges such as limited 
bandwidth for communication, inability for physical human intervention, and limited power for 
lighting and computation; thus, a high degree of autonomy when operating in such 
environments is critical. Overcoming these challenging conditions will also get us one step 
closer to studying oceans on other planetary bodies like Europa and Enceladus, both of which 
have large oceans below a deep layer of ice that are of significant scientific interest [10].  
 
Manipulator Calibration 
In order to automate complex manipulation tasks, a manipulator typically requires calibration in 
order to locate the position of its end effector with respect to objects within its environment. In 
general, manipulator calibration can be broadly categorized into three levels as proposed by 
Mooring et al. [11]:  

1. “joint level” calibration, which determines the relationship between the raw joint sensor 
signal and the actual joint angles 

2. “kinematic model” calibration, which determines the basic kinematic geometry of the 
robot as well as the correct joint-angle relationships 

3. “non-kinematic” calibration, which is correcting for the effects of non-geometric errors 
such as joint and link compliance, friction, and gear backlash 

 
The methods presented in this study will focus on “joint level” calibration since accurate 
knowledge of the manipulator’s joint angles is a prerequisite for higher levels of calibration. 
 
Common joint angle sensors used in manipulators include encoders and potentiometers, which 
produce a digital signal or analog voltage based on rotary or linear motion. In conventional 
cases, the functional relationship between the signal from the sensor  and the actual joint 
angle  is assumed to be linear and can be written as: [11] 

 
 
Where  is the joint position sensor gain (joint angle represented by each unit change of the 
sensor) and  is joint angle offset (the joint angle when the sensor reading is 0) 
 
Prior Level 1 Calibration Techniques - Encoders 
In the case of encoders, the ratio between the changes in sensor measurements and actual 
joint angles  (joint position sensor gain) can be determined by “simply obtaining the number 
of lines on the encoder and checking to see if the electronic counter in the controller multiplies 
the count by 1, 2, or 4” [11]. Although this process alone is typically sufficient for encoders, 
Švaco et al. [12] included a joint sensor gain for each of the joints as additional parameters to 
correct for slight errors that result from this process. Calibration of the joint angle offsets  is a 



 

bit more complicated, and various calibration processes have been developed to complete this 
calibration given that the sensor gain is known. Previous work in this space will be discussed in 
this section.  
 
One popular approach commonly used in industrial applications involves pointing a laser pointer 
mounted on the end-effector at a position sensitive device in the workspace from a variety of 
positions  [13] [14] [15]. Chen et al. [16] proposed an approach similar to this, except that the 
laser is mounted in the workspace and the manipulator is manually moved such that a specific 
point on the end-effector is in-line with the laser. Other approaches required an external laser 
tracker and measuring a circular trajectory by rotating each joint individually through its full 
range of motion [17] [18]. Zhuang et al. [19] proved that 3 plane constraints were required to 
calibrate a manipulator arm, which has been used to improve calibration of kinematic 
parameters for a 6-DoF manipulator and the extrinsic parameters of a 2D laser attached to the 
end effector [20]. Lind [21]  proposed a contact-based calibration method that uses a 
wrist-mounted force sensor, calibration probe, and a calibration plate. Contactless 
camera-based calibration approaches are also commonly used in industrial settings [22] [12]. 
 
In cases where relying on external sensors mounted in the workspace is not feasible, as would 
be the case with most mobile robots, gravity-based approaches have been proposed. One 
involves placing two accelerometers on adjacent links to estimate the joint angles directly and it 
is currently used on heavy-duty mining shovels [23]. Similar approaches use inertial 
measurement units to directly estimate joint angles [24] [25] [26]. While these sensing methods 
don't replace resolvers, encoders, or other contact-based angle sensors, the results aren’t 
reliant on encoders and can be used for fault detection or as a backup angle measurement 
system. 
 
In addition to calibrating joint angle offsets during calibration, other methods involved techniques 
to simultaneously calibrate intrinsics and extrinsics of other sensors, such as the bundle 
adjustment approach proposed by Pradeep et al. [27] and the joint calibration approach 
proposed by Le and Ng [28]. This approach has been used to fully calibrate robots with 
manipulator arms and cameras, such as the single-armed Fetch robot and the two-armed 
JANUS robot prototype [29] [30].  
 
Although these calibration processes work well for calibrating encoders, they’re not immediately 
extensible to calibrating potentiometer output due to their implicit assumption that the joint 
sensor gain is known before calibration. Calibration techniques for potentiometers are discussed 
in the next section. 
 
Prior Level 1 Calibration Techniques - Potentiometers 
Although linear potentiometers tend to have problems with low precision that reduces their 
popularity for measuring joint angles [11], they’re widely used in hydraulic underwater 
manipulators [1] due to their better tolerance for extreme pressures. However, because of 
analog electronics associated with the use of potentiometers, the need for periodic recalibration 



 

of joint angle offsets and ratios has been documented [31] It’s also worth noting that 
potentiometer measurements tend to be dependent on temperature and pressure, especially in 
underwater environments where pressures can reach 16,000 PSI [32] and temperatures range 
from -2°C to 30°C [33]. To accurately characterize the potentiometer to angle relationship in a 
lab setting, the manipulator would need to be placed in a controlled environment that replicated 
these conditions. This would be extremely expensive and time-consuming, and would also need 
to be done regularly due to the fact that the potentiometers naturally experience some drift over 
time. It would be much more practical to develop a calibration process that can be completed in 
the field, which is what this study aims to address. 
 
Some prior studies discuss various methods for calibrating the joints’ potentiometer to angle 
relationships. Williams [34] proposed computing this relationship by recording the potentiometer 
outputs by driving each joint to its two nominal limits, and then using a general linear calibration 
equation that finds both the joint angle offset and scaling terms. He does note that the 
calibration could be improved by taking multiple measurements and then using a linear 
least-squares fit to compute the relationship, but ultimately concluded that the proposed 
calibration was sufficiently accurate for his application. Wu et al. [35] noted that manual 
calibration approaches typically rely on using protractors and rulers to get a ground-truth joint 
angle measurement, and suffered from inaccuracies and inefficiencies when applied to complex 
robots. They proposed an automated method using 24 optical markers for motion capture 
placed on a 36 DoF humanoid to calibrate joint potentiometers, tendon length sensors, and the 
motion capture marker positions on the robot. A gravity-based approach using joint torque 
sensors proposed by Ma et al. [36] leveraged the fact that the torque exerted on each joint by 
gravity varies sinusoidally with the rotation angle to calibrate joint sensor offsets and gains. 
 
Limitations 
To our knowledge, the current methods of joint sensor calibration are not extensible to our 
application of calibrating potentiometer-based hydraulic manipulator arms installed on deep 
submergence vehicles. Due to physical constraints imposed by a particular vehicle’s geometry, 
driving the arm to nominal limits as Williams proposed is often not possible. This approach also 
does not accommodate obstacles that may obstruct the arm’s path, which is an important 
consideration for manipulators operating in the field. Using motion capture markers would 
require a stable external camera with a good view of the arm during calibration, which is a 
difficult perspective to get on board a mobile underwater platform. A gravity-based approach 
with joint torque sensors is not ideal on board a mobile vehicle that experiences some rotation 
along all three orientation axes during calibration. Falling back to a manual calibration approach 
with protractors and rulers is also not possible since operators cannot approach depths at which 
the arms operate at, and the calibration must be completed in-situ due to the effects of 
temperature and pressure on analog components like potentiometers. These factors highlight a 
need for the calibration approach proposed in this paper.  
 
Our Approach 



 

Our calibration method relies on measurements from a wrist mounted camera observing 
fiducials in the environment around the manipulator. The position of one fiducial mounted on the 
base of the manipulator arm needs to be known before calibration. However, keeping the one 
base fiducial in view of the camera at all times would prevent sufficient excitation of the joints in 
the calibration dataset, likely leading to poor results. To combat this, we rely on TagSLAM [37] 
to provide an accurate transform between each of the fiducials placed in the environment and 
the base fiducials. This way, we can treat all of the fiducials as landmarks with known positions 
opposed to just the one base fiducial. 
 
After observing the fiducials, we can re-project these observations through the kinematic chain 
of the arm to estimate their positions based on the hypothesized joint angle parameters, similar 
to the approaches used in [29] and [27]. However, unlike those approaches, we also include the 
joint sensor gain for each joint as additional free parameters to the system. We then optimize 
the system by finding a set of parameters that minimizes the distances between the fiducials’ 
estimated positions and their actual position. 
 
This method can be employed to characterize linear relationships between any joint angle 
sensor and the actual joint angles, whether it’s calibrating the mapping of potentiometers, 
encoders, or an unknown gear ratio between the sensors and the joint angle. The contribution of 
this work is a novel method to calibrate the ratio between the raw sensor output and joint angles 
that can be completed with a wrist mounted camera without an operator physically present. 
Experimental and simulated results from implementing our method on a hydraulic Kraft 
manipulator arm are presented.  
 

Minimum Variance Method 
Kim et al. [38] proposed using the minimum variance method for robot head-eye calibration, and 
we extended their implementation to include the joint offset and scaling terms as additional free 
parameters in the objective function. When using this method, the only requirement is that the 
observed landmark is stationary. Although this method seems appealing since it doesn’t require 
the position of the observed landmark to be known, we found that it is not a robust solution to 
our problem due to its sensitivity to measurement noise. This section will explain the analysis 
that informed this conclusion. 
 
The core concept behind this method is that if all of the free parameters are correct, 
transforming observations of the same landmark from the wrist camera to the root link from a 
variety of arm positions should result in the same point in the root link frame. However, if the 
parameters are incorrect, the observations will appear to be disjointed when this transformation 
is applied. Because of this, we can construct an objective function that aims to minimize the 
variance between observations of the same landmark in the base frame. 
 



 

 
Figure 1: Minimum variance method visualization - the minimum variance method minimizes the 

variance of the reprojected observations of the same landmark in the base frame 
 
Objective Function 
We can apply equation 1 to describe each of the sensor to angle relationships for individual 
joints. For a particular joint , this would be  

 
 
After vectorizing this relationship to include all of the joints in the manipulator, we get 

 
 
The free parameters of the system to be optimized include the joint gain and offset variables, 
which can be written as  

 
 

Additional definitions of notation are clarified below: 

 : 3D position of the ith measurement of landmark j in the base frame 

 : 3D position of the ith measurement of landmark j in the camera frame 

 : measurements of landmark j in the camera frame 

 : the average 3D position of measurements in the base frame for landmark j 

 : The average value of the x component of measurements in the base frame for landmark j 
 

Each calibration data point  is a 3D position of an observed landmark  with respect to the 
wrist camera frame. By using the forward kinematics and the joint angle gains  and offsets 

,​ ​we can compute the estimated position of the calibration point with respect to the base 

frame . The covariance matrix is then computed for each landmark using the equation: 



 

 
 
where  is the number of landmarks 
 
From this covariance matrix, we can, we compute the total amount of variance in the set of 
transformed points for each landmark by using the eigenvalues. Since eigenvalues represent 
the variance in the variables in a particular direction, the total variance of the dataset along all 
three dimensions can be computed from a sum of eigenvalues along each of the x,y, and z 
axes. 
 
Since the sum of eigenvalues is equal to the trace of the covariance matrix, our objective 
function can be represented by the equation: 

 
 

In other words, the solution to this optimization problem is the set of free parameters   that 
would minimize the eigenvalue sum of the covariance matrix, and thus would minimize the 
variance of the measurements when transformed to the base frame. 
 
Like the method proposed by Kim et al. [38], we use the BOBYQA algorithm for bound 
constrained optimization proposed by Powell since it’s a derivative-free method that handles 
noisy data relatively well. 
 
Preconditioning 
Like other optimizers, the BOBYQA algorithm converges to more accurate solutions in fewer 
iterations if the initial parameters are preconditioned. In our case, raw joint feedback can come 
in many ranges, which can cause issues during optimization. For example, a 16 bit encoder’s 
raw output will be in the range of 0 to 65,536, while the desired output in radians may range 
from  to . In this situation, the free parameters for the scaling terms will require 



 

adjustments typically in the thousands range while the joint angle offsets will never require 
adjustments greater than . The BOBYQA algorithm struggles to find good solutions when 
both of these parameters need adjustments that differ by several orders of magnitude, as 
illustrated by Figure 2. To improve the quality of our results, all of our parameters are re-scaled 
by the initial level of uncertainty so that they all require approximately the same magnitude of 
adjustment. 
 

 
Figure 2: It’s much easier for optimizers to solve well-conditioned problems like the second one 
than ill-conditioned problems like the first one. Since we typically know the uncertainty levels in 
our measurements, we can rescale our parameters before running the optimizer. 
 
Analysis & Discussion 
We implemented this calibration method in C++ and tested it on a simulated model of a 6 DOF 
Titan 4 manipulator arm. With no measurement noise, the optimizer converged to a solution that 
resulted in <1mm end-effector accuracy, regardless of the initial parameter error. However, with 
added measurement noise as little as 1cm, the solution resulted in an end-effector accuracy of 
5-15cm, which is unacceptable for most manipulation tasks. The issues with this optimizer are 
illustrated in Figure 3. 
 
 



 

 
 
Figure 3: (Left) While the optimized end-effector positions (green) are much closer to the 
ground-truth positions (grey) than the uncalibrated positions (red), the position error is still quite 
high. (Right) When the initial parameters are very close to the correct values, the optimizer finds 
a solution that results in less variance between the projected measurements (in white) but a 
much higher end-effector error. 
 
To gain some insight as to why this is the case, we ran a sensitivity test on the optimizer. In 5 
degree increments from 0 to 180, an error was applied to each of the individual joints, and the 
resulting impact of that addition on the objective function and the end-effector error were 
computed. The results of this test are displayed in Figure 4 
 

 



 

Figure 4: Results from adding an angle offset to each individual joint plotted against the 
corresponding output from the minimum variance objective function and the impact on 
end-effector error. 
 
Looking at Figure 4, we can see that even at relatively high levels of joint error (~25 degrees), 
the objective function still outputs values quite close to 0; meanwhile, at 25 degrees, the 
end-effector error is quite high, up to ~75cm. To make matters worse, errors in joints lower in 
the kinematic chain (i.e. the shoulder) have a lower effect on the objective function output, but 
have a significantly higher effect on the resulting end-effector error.  
 
These issues provide a likely explanation as to why the objective function converges perfectly 
when there is no measurement noise but will converge to rather inaccurate solutions with the 
slightest bit of measurement noise. With measurement noise, the minimum value of the 
objective function becomes obfuscated, resulting in inaccurate solutions that cannot be used in 
practice. These unfavorable results drive us to seek out another solution to the calibration 
problem. 
 
 

The Proposed Method 
Objective Function 
Our proposed method uses the same formulation to describe the linear relationship between the 
joint sensor and angle, which is summarized by equation 2.  
 

Using the same notation as before, each calibration data point  consists of a 3D position of 

a landmark with respect to the wrist camera frame.  are the computed positions of the 
points with respect to the base frame based on  and . To extend the previous definitions, 

we’ll additionally define  as the known 3D position of landmark  with respect to the base 
frame.  
 

For each landmark, we compute the total sum of distances between  and . Our 
objective function can be represented by the equation: 
 

 
where  is the number of landmarks and  is the number of calibration points per landmark 
 
In other words, the solution to our optimization problem is the set of free parameters that would 
minimize the sum of distances between the measurements when transformed through the 
kinematic chain to the base frame and the known landmark position. 



 

 

 
Figure 5: Minimum distance method visualization - the minimum distance method minimizes the 
distance between the reprojected observations and the known position of the landmark in the 

base frame 
 
Calibration Process 
The calibration process can be broken up into two primary parts: data collection and 
optimization. The diagram shown in Figure 6 provides a detailed breakdown of these two 
processes. 
 



 

 
Figure 6: High-level overview of calibration process. Calibration happens in two primary steps - 
data capture and optimization. During the optimization step, the objective function is computed 

and the free parameters are adjusted to optimal values. 
 
Analysis & Discussion 
Like the minimum variance method, we also implemented this calibration method in C++ and 
tested it on a simulated model of a 6 DOF Titan 4 manipulator arm. The results looked much 
more promising, with the optimizer converging to a solution with <1mm end-effector error with or 
without measurement uncertainty. This can be explained by the strong response of the objective 
function to errors within joint angles, which is illustrated by the results of the sensitivity test 
presented in Figure 7. 



 

 
Figure 7: Results from adding an angle offset to each individual joint plotted against the 
corresponding output from the minimum distance objective function and the impact on 
end-effector error. 
 

Conclusion 
While appealing since it has fewer requirements, the Minimum Variance method is not viable for 
calibration due to its extreme sensitivity to measurement uncertainty, as the sensitivity tests 
show. The proposed Minimum Distance method is substantially more robust while only needing 
one more requirement than the Minimum Variance method, which makes it more practical for 
real-life calibration tasks. The proposed calibration method can be done in-situ, and is 
extensible to recalibration even with failed joints, which makes it an improvement over existing 
methods for remote underwater applications.  



 

 
Figure 8: Testbed setup - a 6 degree-of-freedom hydraulic Kraft manipulator arm with a 
calibrated wrist-mounted fisheye camera and Apriltag fiducials on the base and in the 
environment 
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