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Abstract—Underwater intervention tasks in the deep ocean
are typically completed with remotely operated vehicles (ROVs)
equipped with robotic manipulator arms, and rely on optical-
based perception of the scene to guide the manipulation tasks.
However, the performance of optical sensors is highly degraded
in turbid water conditions, which can arise from a variety of
causes. This work investigates the use of an imaging sonar and
doppler velocity log mounted on the wrist of a manipulator for
close-range scene mapping to aid in underwater intervention.
We integrate this sonar-based perception method with a shared
autonomy framework to facilitate safe intervention tasks by users
without ROV piloting experience in turbid environments, and
conduct experiments to validate our system.

Index Terms—Underwater manipulation, imaging sonar,
doppler velocity log, eye-in-hand perception

I. INTRODUCTION

PERFORMING underwater intervention tasks in low-
visibility conditions remains an outstanding challenge

for existing underwater manipulation systems. Typically, in-
tervention tasks (e.g., scientific seafloor sampling, infrastruc-
ture maintenance) with work-class systems are completed
by trained pilots who teleoperate remotely operated vehi-
cles (ROVs) equipped with robotic manipulator arms. ROV
pilots complete intensive training to operate these vehicles
safely, and considerable ship-side infrastructure is necessary
to support teleoperation [1]. These factors combined with high
operational expense and the limited berthing available onboard
the support ships restricts access to underwater intervention
operations.

Several prior works aim to mitigate these barriers to access
by integrating various degrees of robot autonomy to reduce
the training and infrastructure requirements [2]–[5]. However,
due to their reliance on optical cameras for perception, both
teleoperated and autonomy-based ROV operations can be
significantly hampered by turbid conditions [6]–[8]. Unfor-
tunately, such conditions frequently occur due to a variety
of natural and anthropogenic causes, including but not lim-
ited to wind and waves [9], marine traffic [10], and urban
runoff [11]. Thus, operating in these environments requires a
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robust method of perception that remains functional in visually
degraded conditions. For particularly sensitive applications,
such as unexploded ordinance (UXO) remediation, operational
robustness is especially critical since errors can pose a serious
threat to human health and the environment.

Automated optical 3D reconstruction methods typically
employed onboard robotic systems often rely on the detection
of natural features in the environment, which leads to poor
reconstruction quality in areas with turbid water or suboptimal
lighting conditions [8]. Compared with optical imaging, the
longer wavelength of acoustic sensors reduces their suscepti-
bility to signal attenuation in turbid conditions. This attribute
is potentially useful for extending manipulation capabilities to
low-visibility environments.

ROVs are typically equipped with sonars for navigation and
obstacle avoidance. Forward-looking imaging sonars typically
have a wide vertical aperture which increases their spatial
coverage and provides pilots with context of the ROV’s
surroundings. However, this wide aperture results in elevation
angle ambiguity when using the data for mapping construct
maps. Resolving this ambiguity to create 3D scene recon-
structions remains an area of active research, with prior works
being roughly grouped into feature based methods [12], model-
based [13], [14], and volumetric techniques [15]. Feature based
methods and generative models typically require prior knowl-
edge or make assumptions about geometry (e.g., flat seafloor
and monotonic surfaces [16]), vehicle motion (e.g., rectilinear
transits using passively roll and pitch stable vehicles [14]), or
material properties [13]. Volumetric techniques reconstruct the
environment based on intersecting regions among a collection
of sonar images [17], [18]. Unlike other mapping methods,
volumetric methods do not impose constraints on environ-
mental structures or vehicle motion. Rather, the quality of
the reconstructions with these methods benefit from collecting
data across a wide variety positions and orientations. Since
robotic manipulators often operate across all six degrees of
freedom with nonlinear velocities in irregular and potentially
unknown environments, volumetric methods show promise in
enabling intervention operations in low-visibility conditions.

In this work, we address the challenge of underwater inter-
vention in turbid conditions by employing a volumetric sonar-
based perception method during manipulation tasks, which has
the benefit of remaining operational regardless of visibility and
lighting conditions. Through our experiments, we evaluate the



efficacy of mapping an unstructured workspace using wrist-
mounted sonars. Additionally, we examine their utility in
assisting novice users (i.e., non-ROV pilots) with intervention
tasks in low-visibility conditions through integration with a
shared autonomy framework.

II. METHODS

We adopt an approach that integrates acoustic perception
methods with a shared autonomy framework to enable reli-
able underwater intervention in low-visibility conditions. This
approach leverages the complementary strengths of robotic
systems and human operators: the robot automates the low-
level control, motion planning, and spatial reasoning of the
data, while human operators contribute their expertise in
identifying objects, discerning erroneous data, and making
informed decisions. In this section, we introduce an acoustic
eye-in-hand workspace mapping approach, present a real-time
volumetric mapping method using multibeam data, and detail
their integration with a shared autonomy framework to render
the data in real-time for the end user.

A. Acoustic Eye-In-Hand Workspace Mapping

To identify objects and obstacles in the workspace during
intervention, we integrate a wrist-mounted multibeam imaging
sonar, doppler velocity log (DVL), and optical camera on
a robotic manipulator arm. The “eye-in-hand” approach of
mounting sensors on the end-effector of a robotic manipulator
is often adopted with optical cameras since the manipula-
tor’s dexterity allows for flexible viewing angles, which can
be useful for structure from motion (SFM)-based mapping
approaches [19]. We leverage the manipulator’s ability to
acquire multiple viewing angles to resolve the imaging sonar’s
elevation angle ambiguity, which is discussed in Section II-B.
Although the focus of our work is on sonar-aided perception,
we include an optical camera to aid in close-range perception
(<30cm), particularly when the distance between the gripper
and the environment is within the blanking distance of the
sonars.

The DVL and camera are mounted facing downward to-
wards the gripper, while the multibeam sonar faces forward,
away from the base of the arm. Representative data examples
from using this sensor configuration are illustrated in Fig-
ure 2. This configuration optimally positions the multibeam
sonar to perceive the arm’s workspace and allows for the
construction of an occupancy grid of the area in front of
the manipulator with minimal movement (Figure 3). Although
DVLs are typically employed for estimating vehicle velocity
and dead-reckoning based navigation, in this method it is used
primarily for assessing occupancy volumes and workspace
geometry directly beneath the gripper. The DVL complements
the multibeam sonar by providing vertical range data using
a narrow beamwidth, which helps to counteract the vertical
“stretching” distortion caused by the multibeam’s wide vertical
aperture.

Fig. 1. Wrist-mounted multibeam sonar, DVL, and camera, with annotated
fields of view. With the manipulator’s gripper pointed downwards, the multi-
beam and DVL sonars are mounted 12.8 and 60 degrees from horizontal,
respectively.

Fig. 2. Representative images from the (A) multibeam sonar and (B) optical
camera in a turbid test tank. (C) The 3D occupancy map generated from
the multibeam data, with DVL data projected on top (green). While a chain
(yellow) and rock (red) are visible in the sonar data, they are difficult to
identify in the camera data due to the turbidity level.

B. Multibeam Occupancy Mapping

Our method, which we call the min-max filtering approach,
builds upon prior work using volumetric reconstruction meth-
ods which evaluate the intersecting regions among a collection
of sonar images [17], [18]. To maximize its utility in a



Fig. 3. Pitching the multibeam sonar quickly resolves elevation ambiguity
while requiring minimal manipulator movement. (left) After the first image,
the chain appears vertically stretched in the voxel grid. (right) After moving
the arm slightly to adjust the sonar pitch angle, the new data resolves the
ambiguity and corrects the chain’s height in the voxel grid.

workspace manipulation context, we prioritize its design to be
real-time capable and require minimal assumptions about the
workspace geometry or sensor motion. This application also
requires that the generated voxel grid maintains a low false-
negative rate. While a moderate false-positive rate may cause
the manipulator’s accessible areas to appear smaller than their
actual size, a false-negative can cause catastrophic collisions
with the workspace if the manipulator incorrectly classifies a
voxel as being unoccupied. The min-max filtering process is
described in detail below:

Initialization: Construct Voxel Grid We first initialize a
voxel grid, which we store as a 3D meshgrid. The meshgrid is
box-shaped, with the dimensions of the grid fully containing
the manipulator workspace. The spacing between the points
in the grid are set to a fixed voxel size. We refer to the set of
points in this meshgrid as set M , and additionally define the
following notation:

q = (i, j, k): grid voxel at index (i,j,k)
p = (x, y, z): arbitrary cartesian point in world frame
p̄ = (x, y, z): meshgrid-aligned point in world frame
= q ∗ s− ō

where s is the voxel size, and ō is the voxel grid origin
We refer to individual points in the voxel grid with the

notation M(WqV ), where WqV refers to the index (i,j,k) of
voxel V , expressed in the world frame W . Equivalently, we
can refer to the same points with the notation M(W p̄V ), where
W p̄V refers to the cartesian position of voxel V in the world
frame.

With a fixed-base manipulator, the size of the reachable
workspace is known in advance, and thus the memory for our
voxel grid can be pre-allocated. We use a 3D meshgrid to
prioritize the read and write speeds of our voxel grid, which
contributes to our method’s real-time performance.

Initialization: Construct Voxel Template Next, we construct
a “voxel template” to discretize the area imaged by the multi-
beam sonar. We start by initializing a second 3D meshgrid with
the following dimensions to fully contain the sonar’s field-of-
view:

x : r

y : r ∗ cos(π/2)− horizontal FOV
z : r ∗ sin(π/2)− vertical FOV

where r = sonar range

The spacing between the points is set to the fixed voxel size
from the prior step. We refer to individual points in the voxel
template T with the notation T (SpV ), where SpV refers to
the cartesian position of voxel V relative to the sonar’s frame
S. The set of points contained in T only contains the meshgrid
points within the sonar’s FOV. Formally,

T :=
{

SpV
∣∣ SpV satisfies the following constraints

}
a) ∥SpV ∥ < sonar range

b)

∣∣∣∣∣arctan
(

SpV
y

SpV
x

)∣∣∣∣∣ < horizontal FOV
2

c)
∣∣∣∣arctan(SpV

z
SpV

x

)∣∣∣∣ < vertical FOV
2

To illustrate through an example, the set of points contained
within the voxel template T for a voxel size of 0.05 meters is
depicted in Figure 4.

Fig. 4. (left) X-Z and (right) X-Y view of cartesian points included in the
voxel template. Points are plotted in the multibeam sonar’s reference frame

This voxel template is used to reduce the computational
resources required to project the sonar data into the global
frame. Rather than projecting each individual pixel in the
image, we use the template to project the minimum number
of points to sufficiently represent the data, based on the voxel
size.

Step 1: Project Template into World Frame For each new
multibeam image, we use the template to project the sonar’s
field of view into the world frame. For each voxel SpV in the
template T , we compute its position in the world frame W



WpV = WXSSpV

where WXS denotes the transformation between the world
(W) and the sonar (S). WXS is estimated using the manip-
ulator arm’s joint angle sensors and its forward kinematics
model.

Step 2: Compute Nearest Grid Voxel Indices Given the set
of template voxel points in the world frame WpV , we compute
the nearest grid voxel index to each point using the following
equation:

WqV = round
(

WpV + ō

s

)
We disregard invalid values of WqV (i.e., where indices are

less than 0 or greater than the size of the map). Invalid indices
indicate that the corresponding template voxel falls outside of
our voxel grid (and thus our manipulator workspace). Using
this indexing approach enables us to identify the intersecting
region between the sonar data and the voxel grid without
projecting each individual pixel or iterating thorugh the entire
grid.

Step 3: Convert Grid Voxel Indices to World Coordinates
Our set of WqV values identifies the voxels in our voxel grid
that intersect with the sonar data. The next step is to compute
the cartesian position of each of these voxels in the world
frame, which can be written as follows:

W p̄V = WqV ∗ s− ō

Step 4: Transform Voxel Positions to Sonar Frame To
convert from voxels in the world frame to the sonar frame,
we multiply each voxel coordinate W p̄V by the inverse of the
transformation matrix between the world and sonar frames
(WXS is given in step 1)

Sp̄V =
[
WXS

]−1 W p̄V

Step 5: Compute Max Intensity of Projected Voxel For each
value of Sp̄V , we record the max intensity value contained
within the voxel based on its projection on the sonar image
(Figure 5).

I
(
Sp̄V

)
= max intensity in projected voxel

Fig. 5. In Step 5, the voxel associated with each value of Sp̄V is projected
onto the cartesian multibeam image. The max intensity of the projected voxel
in the new data is compared with the voxel’s previous intensity value.

Step 6: Update Voxel Grid Finally, we update the voxel
grid based on the value of I

(
Sp̄V

)
. If the existing value of

M(i, j, k) is uninitialized or less than the new intensity value,
the voxel grid is updated using the new value. Formally,

M(i, j, k) = max
(
M(i, j, k), I

(
Sp̄V

))
C. Shared Autonomy Integration

We integrate the manipulator joint angle feedback, camera
data, sonar image, projected DVL data, and the computed
voxel grid with the shared autonomy framework SHARC [2].
The SHARC-VR interface (Figure 6) provides the end-user
a virtual reality (VR)-based interface for viewing the data in
context of the manipulator arm, and automates the low-level
motion planning and control to safely enable operations by
non-pilot users. In addition to rendering the projected DVL
and multibeam data in context of the manipulator arm, we
provide the user with the option to view the raw 2D camera
and sonar images directly.

Fig. 6. Mixed-reality view of the SHARC-VR with integrated data feeds
from the multibeam sonar, DVL, and optical camera. Hand gestures are used
to interact with the interface and control the manipulator.

III. EXPERIMENTAL SETUP

To validate our approach, we conduct experiments with an
Oculus M1200d multibeam imaging sonar (Blueye; Trond-
heim, Norway) operating at 1.2 MHz and a DVL A50 (Water-
Linked; Trondheim, Norway) operating at 1 MHz with a 10
Hz update rate for all sensors (Figure 1). The Oculus sonar
was configured with a gain setting of 40% and a range of 2 m.
These sensors are mounted on the wrist of a fixed-base seven-
degree-of-freedom hydraulic manipulator arm (Kraft TeleR-
obotics; Overland Park, KS) and are used to image various
objects in a sandbox submerged in a turbid 0.6 m deep test
tank (Figure 7). All of the sensors communicated via a wired
Ethernet connection to a desktop computer running ROS1. A
separate laptop connected to the same wired network ran the
SHARC-VR interface (developed in Unity), and displayed the
interface in an Oculus Quest 2 headset (Meta; Menlo Park,
CA).



Fig. 7. (Top) 3D reconstruction results from our min-max filtering approach with the multibeam data. Although unneccesssary when viewing in 3D, in this
figure we omit data points below a certain intensity value, crop the data to exclude the bottom of the tank and regions outside of it, and color the points based
on the Z-axis value to aid in interpretation. (A) The tank walls, (B) chain, (C) rock, (D) tool basket, and (E) metal pipe in the reconstruction closely match
their actual locations in the tank (Bottom).

IV. RESULTS

Results using the min-max filtering method for multibeam
data recorded using the experimental setup described in Sec-
tion III are presented in Figure 7 and Table IV. Testing
used a voxel grid size of 4x3x1 meters, with a 0.03 meter
voxel size (∼450,000 voxels).1 The voxel grid was constructed
by initially rotating the sonar pitch with the arm in place
(before constructing the grid, we assume that only the area
immediately around the arm is likely to be free of obstacles).
Once a preliminary grid was constructed, we identify regions
with low-intensity voxels in the grid as safe regions within the
workspace where the arm can then be moved to improve data
coverage.

TABLE I
MIN-MAX FILTERING PERFORMANCE METRICS

Voxel size
(m)

Time per Image
(s)

Update Rate
(Hz)

0.06 0.07 14.31
0.05 0.12 8.3
0.04 0.25 4
0.03 0.52 1.9
0.02 1.6 0.6
0.01 12 0.08

1 The maximum update rate for the Oculus
sonar is 10 Hz

1In this implementation, the primary performance bottlenecks are at-
tributable to 3D rendering and data conversion processes. With the workspace
gridded at ∼50,000 voxels, the renderer started to to lag, and data conversion
requirements decreased the voxel grid update rate to 2 Hz. We circumvented
these performance issues by only sending a subset of the full voxel grid to
the SHARC-VR interface.

Although the figure illustrates thresholded and cropped data
with points colored according to their Z-axis value for ease of
interpretation in 2D, when rendering the data in 3D we display
all of the data and color the points based on the recorded
intensity value. As evident by Figure 7, The tank walls, chain,
rock, tool basket, and metal pipe are recognizable in the 3D
reconstruction.

Although the objects appear vertically stretched in voxel
grid after the first few sonar images due to the multibeam’s
wide vertical aperture, their height in the final reconstruction
accurately reflects their true size. For example, in Figure 7 the
additional viewing angles generated by moving the manipu-
lator across a variety of pitch angles and locations helps to
resolve the chain’s elevation angle ambiguity from individual
images.

It is also worth noting that in the full voxel grid, multi-
path artifacts appear beyond the edge of the tank as a result
of beams reflecting off the bottom of the tank and echoing
off of the water surface. During our testing, these artifacts
did not affect our ability to conduct manipulation tasks since
they generally appeared well beyond the reachable area of the
manipulator. Artifacts that did appear within the manipulator’s
workspace were removed by the min-max filter as data was
recorded from additional view angles.

The raw camera and sonar images, projected DVL data, and
voxel grid were rendered in the SHARC-VR interface in real-
time, which enabled non-pilot users to retrieve objects from
the tank despite the turbid conditions. While the projected data
proved to be useful for understanding the workspace geometry
relative to the arm, it was easier for users to identify objects
using the sonar and camera images directly. The voxel grid



was particularly helpful for navigating the arm around the
workspace while avoiding obstacles. Once the manipulator
was close to the object (within ∼10 cm), the user could
switch over to using the camera and DVL data for alignment.
Although it was difficult to see objects in the camera image
at a distance due to the turbidity (Figure 2B), objects were
generally visible at shorter ranges (Figure 8-4). The process
used to retrieve objects from the tank using the interface is
illustrated in Figure 8.

Fig. 8. Illustrated workflow of an object retrieval task in turbid water using
the available data in the SHARC-VR interface.

V. DISCUSSION

For each new multibeam image, the min-max filtering
approach identifies the maximum intensity value contained
within a voxel in the new data, and updates the voxel grid
with the minimum between the new and the existing data in the
map. By recording the maximum intensity value over a region
and using a “voxel template” to represent the data rather than
processing and reprojecting individual pixels in the image,
our method minimizes computational load and can process
multibeam data in real time. Despite this approximation,
this approach maintains a sufficient degree of robustness by

minimizing false-negatives in the generated map. Objects such
as thin metal pipes can show up as very small but strong
high-intensity returns across a limited number of voxels, and
thus recording the maximum intensity value contained within
a voxel prevents the method from over-estimating the free
space in the voxel grid. While recording the lower intensity
value between new voxel data and the current voxel grid helps
to resolve the elevation ambiguity in static workspaces, this
method is inadequate for characterizing dynamic obstacles in
the work environment. Rather than simply recording the lowest
intensity value, future work on quantifying uncertainty based
on the new data can help to address this limitation.

Although the min-max filtering approach generally re-
solved multi-path artifacts within the manipulator’s reachable
workspace with sufficient data, multi-path artifacts persisted
beyond the edges of the workspace. While this had minimal ef-
fect on conducting manipulation tasks in a confined tank since
it can be assumed that returns beyond the tank’s walls were
invalid, it could make object identification more difficult in
open-water settings. However, most of the multi-path artifacts
were caused by sonar beams reflecting off extremely close
proximity of the tank walls and water surface, and thus these
artifacts may appear less pronounced in open-water settings,
which will be explored in future work.

The current implementation of the min-max filtering ap-
proach focuses on generating a real-time capable method that
produces robust maps with a low false-negative rate, which
are essential properties of a mapping method in a sonar-aided
manipulation context. However, it currently ignores issues of
navigation drift and scalability, both of which need to be
addressed in future work for the method to be used for free-
floating manipulation.

As discussed in Section IV, the min-max filtering approach
and additional data from a DVL and camera enabled the
completion of object retrieval tasks in turbid conditions using
the SHARC-VR interface. Minimal manipulator movements
were required to pitch the multibeam sonar to resolve the
elevation angle ambiguity in the sonar data and construct a
voxel grid sufficient for manipulation. Meanwhile, the camera
and DVL data proved to be useful for small adjustments to
align the gripper with objects in the tank.

VI. CONCLUSION

In this paper, we present a new sonar-based structure
from motion method for underwater scene reconstruction and
introduce the min-max filtering method for constructing a 3D
occupancy map. This process addresses the need for robust
perception during intervention operations in low-visibility un-
derwater environments. By utilizing sonar-based perception,
we extend the range of operating conditions for underwater
manipulation beyond the limitations posed by optical imagery.
Through experiments and integration with a shared autonomy
framework, we demonstrate the ability to create a 3D recon-
struction of a manipulator workspace in real time and complete
object retrieval tasks in turbid conditions. By augmenting
perception capabilities in low-visibility conditions, this work



takes a step towards enabling safe intervention missions in
areas currently intractable due to turbidity, and improving
operational robustness in existing systems.

REFERENCES

[1] E. Simetti, “Autonomous underwater intervention,” Current Robotics
Reports, vol. 1, pp. 117–122, 2020.

[2] A. Phung, G. Billings, A. F. Daniele, M. R. Walter, and R. Camilli, “En-
hancing scientific exploration of the deep sea through shared autonomy
in remote manipulation,” Science Robotics, vol. 8, no. 81, p. eadi5227,
2023.

[3] P. Di Lillo, E. Simetti, F. Wanderlingh, G. Casalino, and G. Antonelli,
“Underwater intervention with remote supervision via satellite commu-
nication: Developed control architecture and experimental results within
the dexrov project,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 1, pp. 108–123, 2020.

[4] J. Evans, P. Redmond, C. Plakas, K. Hamilton, and D. Lane, “Au-
tonomous docking for intervention-auvs using sonar and video-based
real-time 3d pose estimation,” in Oceans 2003. Celebrating the Past...
Teaming Toward the Future (IEEE Cat. No. 03CH37492), vol. 4,
pp. 2201–2210, IEEE, 2003.

[5] P. Cieslak, P. Ridao, and M. Giergiel, “Autonomous underwater panel
operation by girona500 uvms: A practical approach to autonomous
underwater manipulation,” in 2015 IEEE International conference on
robotics and automation (ICRA), pp. 529–536, IEEE, 2015.
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