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Abstract— Autonomous underwater gliders (AUGs) are ca-
pable of traversing basin scale distances but lack sufficient
navigation accuracy to operate without periodic surfacing to
obtain GPS fixes and constrain localization drift. Convention-
ally, AUGs use a dynamic flight model with depth averaged
current (DAC) compensation to dead-reckon their position
while subsurface. However, these flight models become unstable
at shallow pitch angles and DAC compensation is inaccurate
in dynamic and highly sheared water column currents. We
present a method and preliminary results from field trials for
improved real-time AUG navigation using a Doppler Velocity
Logger to estimate vehicle velocity and dynamically profile
water column currents. This improved navigation reduces the
AUG localization drift and the need for periodic surfacing, while
independence from a dynamic flight model makes it particularly
suited for shallow-yo profile missions.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) have gained
widespread use for oceanographic survey and exploration,
due to their high operational efficiency and relatively low
overall cost. Many AUVs are designed for conducting high
resolution surveys of oceanic environments, carry energy
intensive sensors and compute systems onboard for analysis,
and use high power thrusters for propulsion. The sizable
hotel load of these vehicles limits their maximum run-
times, and thus typical AUV missions last between hours
to days and span distances ranging from hundreds of meters
to kilometers. Autonomous underwater gliders (AUGs) are
a type of AUV designed for power efficiency and long
duration missions, and are capable of operating for months
at a time with mission lengths of hundreds to thousands of
kilometers. In lieu of thrusters, AUGs are propelled with a
buoyancy drive and wings that convert lift into lateral flight,
with motion paths resembling a sawtooth pattern through the
water column (referred to as a “’yo-profile”).

Conventional, AUGs are designed to navigate open ocean
environments while traversing through the vertical water col-
umn in order to collect a variety of low frequency physical,
chemical, and biological measurements, such as temperature,
conductivity, salinity, and chlorophyll fluorescence. For this
purpose, AUGs operate with minimal compute systems and
generally rely on a calibrated dynamic flight model informed
by depth sensing and low-frequency updates from an Altitude
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and Heading Reference System (AHRS) for localization. To
constrain navigation drift, it is standard practice for the AUG
to surface periodically at the top of a yo (descend and ascent
cycle) to acquire a GPS fix before the next dive. AUGs use
the discrepancy between this GPS fix and their estimated
location to calculate an average current correction for the
next dive’s odometry, but this approximation leads to poor
navigation in environments with dynamic or highly sheared
depth-dependent currents.

Recent work has shown the utility of integrating a low-
power mechanical scanning imaging sonar (MSIS) into the
nose cone of an AUG for characterizing ice coverage [1],
[2], mapping icebergs [3], and characterizing ocean surface
wave spectra [4] from subsurface measurements. AUGs with
these sensing capabilities are a promising platform for long-
range unattended surveys of the Arctic’s Marginal Ice Zone
(MIZ) [2], which is a critical region of study for polar
climate and ecology. Alternative AUV platforms lack the
range to navigate safely in these regions, and accessing
these environments by ship is expensive and subject to ice
flow conditions. When conducting sonar-based surveys of
the sea-ice interface, the ocean surface, or the seafloor, it
is desirable to operate the AUG for extended distances in
a shallow yo-profile (e.g., depth band limited to tens of
meters) to maintain sonar range to the target surface and
minimize vehicle pitching. For missions in high-risk remote
environments, existing localization methods for AUGs lack
sufficient accuracy to operate safely, particularly during shal-
low yo-profile missions, where dynamic models are unstable
at shallow pitch angles, and depth averaged current does not
account for shearing or dynamic currents in the depth band
where the vehicle operates. Conducting surveys under ice
sheets is particularly risky since AUGs must be capable of
autonomously navigating under the ice and then back to open
water to surface safely.

In this work, we present DVL-odo, a method for using
a low-power Doppler Velocity Logger (DVL) for improved
real-time AUG odometry during shallow yo-profile missions
with dynamic profiling and compensation for depth depen-
dent currents. This method is inspired by recent applications
of DVLs on AUGs for profiling water column currents [5],
[6] and developing efficient AUG control policies for long-
range under-ice operations [2]. Figure 1 illustrates a con-
ceptual mission of an AUG using a DVL for localization
while conducting an under-ice survey. Our work presented
here takes us a step closer to achieving such missions with
AUGs.

This work makes the following contributions:

1) A computationally efficient odometry method for AUGs



with a downward facing Doppler Velocity Log that
does not depend on a vehicle dynamics model, making
it suitable for operating gliders at very shallow yo-
profiles and enabling dynamic current profiling and
compensation in the vehicle localization in real-time.

2) Architecture for monitoring and actively adapting AUG
missions from a backseat computer.

3) Field demonstrations of improved AUG localization in
shallow yo-profile missions.

II. RELATED WORK

Conventionally, AUG odometry during subsurface flight is
dead-reckoned from a finely tuned dynamic model that uses
measured depth rate of change and vehicle pitch to determine
the vehicle Velocity Through Water (VITW). The VIW is
corrected by a depth averaged current (DAC) to obtain an
estimate of the AUG Velocity Over Ground (VOG). The DAC
is updated after each dive, calculated using the discrepancy
between the dead-reckoned position and the first GPS fix
after the vehicle surfaces, and the updated DAC is used to
correct the next dive velocity estimates. Recent methods for
AUG model based odometry have achieved VITW estimates
of 1 cm/s or better accuracy [7], [8]. However, this approach
is limited in accuracy by the estimation of the DAC, where
it is assumed that the water column currents can be well
represented by a single depth averaged value that remains
static for the duration of two consecutive dives. In locations
with highly dynamic currents, such as areas with high-
amplitude tidal forcing, or with strong water column current
shear, this assumption does not hold well and can lead to poor
localization. Further, these flight models, which are based
on vehicle pitch and the rate of depth change, encounter a
singularity when the vehicle is pitched at a shallow angle.
This leads to unstable position estimates in shallow yo-profile
missions.

Doppler Velocity Log (DVL) sensors are devices that
transmit multiple tightly focused acoustic beams to estimate
velocity with respect to a surface, such as the seafloor. They
can also operate in a mode referred to as Acoustic Doppler
Current Profiling (ADCP) to measure how fast the water
column is moving with respect to the sensor. These water
column velocities are divided into depth bins, referred to as
shears. DVLs have limited range, and thus estimating current
profiles in the deep ocean requires taking multiple relative
shear measurements as the sensor is moved through the water
column.

DVLs have been successfully deployed on underwater
vehicles to profile depth dependent currents by accumulating
shear measurements as the vehicle descends and ascends
through the water column. In particular, DVL current pro-
filing has been recently demonstrated with AUGs [5], [6].
These prior works are based on the inverse least squares
method introduced by Visbeck [9] for optimally solving
the water column current profile from ADCP casts. This
optimization is constrained by some set of absolute velocity
estimates, which can be obtained from surface drift velocity
measured with GPS fixes, a DAC estimate from GPS fixes

taken before and after a dive, or DVL bottom lock velocity
measurements when the sensor is in range of the seafloor.
However, these methods are computationally intensive and
have not been demonstrated for operation on AUGS in
real-time to improve subsurface navigation. Stevens-Haas
et al. [10] proposed a modification to the inverse solution
method that formulates the optimization as a maximum
likelihood estimator and can accommodate nonlinear mea-
surement models. This method showed good performance in
simulation as a post-processing solution and has potential
for real-time operation, but has not been implemented as an
onboard process. DVLs have also been used to dynamically
calibrate the flight model parameters of an AUG, which
can change due to bio-fouling over long duration missions
[11], though this approach shares the same limitations as
the underlying flight dynamics model. Medagoda ef al. [12],
[13] demonstrated a real-time navigation method for an
AUV that uses an extended information filter to fuse ADCP,
IMU, DVL bottom tracking, and GPS drift measurements to
provide an optimized localization solution. This method was
designed for a pitch stable, hover capable AUV, and uses
multi-ping ensemble measurements from the ADCP with
uncertainty measurements as an input to the navigation filter.
However, AUGs are not pitch stable by design and change
depth rapidly as they yo, and thus the ADCP measurements
must be carefully processed to account for the particular
motions of AUGs. Our method presented in this paper is
complementary to the work by Medagoda et al. [13] as a
computationally efficient DVL odometry formulation that is
specialized for AUGs and performs well as a standalone real-
time localization method, but is also suitable for fusion into
an optimized navigation method with complementary sensing
modalities.

III. METHOD
A. Slocum Glider Hardware and Software Architecture

In this work, we used a Teledyne Marine Slocum G3
Glider with modified lifting surfaces and prototype direct-
drive thruster to improve propulsion efficiency (Fig. 2).
These modifications are detailed in [14]. The vehicle payload
was fitted with a downward facing 600 kHz phased array
Teledyne RDI Doppler Velocity Log (DVL). The DVL was
configured to transmit single interleaved bottom track and
water track pings per ensemble at a ping rate of 1 Hz. The
vehicle was also equipped with a Sea-Bird Scientific CTD,
a passively gimbaled Tritech Micron 700 kHz mechanical
scanning imaging sonar (MSIS) in the nose cone, a Sparton
AHRS-M2, and a Raspberry Pi4 backseat driver computer.

The DVL-Odo process, which builds on post-process
methods developed by [2], [4], [15], is implemented as a
ROS node that runs on the backseat computer. The Sparton
AHRS, DVL, CTD, and MSIS are all directly connected
to the backseat computer with software drivers that publish
the sensor data to ROS topics. A serial communication line
connects the backseat computer to the flight and science
computers, and telemetry data from the flight computer is
published to ROS topics on the backseat computer when
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Fig. 1: Conceptual diagram of an AUG mission under ice using DVL-Odo to improve localization. The DVL-Odo process
enables the vehicle to dynamically profile depth dependent currents and compensate for them in the localization in real-time.
The vehicle path illustrates how AUGs travel through the water column following a yo-profile.
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Fig. 2: 1000m Slocum glider with modified wings, tail
stabilizers, and brushless direct-drive thruster with folding
propeller blades [14]. The vehicle sensor payload includes
a CTD, downward facing DVL, and a pitch-stabilized 360°
mechanical scanning imaging sonar (MSIS) in the nose cone.
The DVL is connected to a backseat driver (Raspberry Pi4),
which also communicates to the flight and science computers
via a serial connection.

the vehicle is in mission. The DVL-Odo process gets GPS
fixes from the flight computer telemetry. Although not used
directly by the DVL-Odo process, additional telemetry trans-
mitted by the flight computer includes the internal glider
localization estimate, the internal AHRS measurements, and
the current target waypoint location. An action server is
implemented on the backseat computer that enables dynamic
control of the flight computer mission while the vehicle is
subsurface. For example, the backseat can adjust the climb-
to and dive-to depths of the yo-profile, change the target
waypoint location, or trigger the vehicle to surface. Figure 3
shows a simplified block diagram of the glider architecture
in relation to the DVL-Odo process running on the backseat
computer.
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Fig. 3: Block diagram showing glider computer and sensor
architecture in relation to the DVL-Odo process runinng on
the backseat computer.
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Fig. 4: DVL current shear measurement relative to vehicle
velocity through water.

B. DVL Based Odometry

1) Processing DVL Measurements: As the AUG moves
through the water column, the DVL measures the water
velocity shear profile directly below the vehicle and relative
to the vehicle’s velocity through water, illustrated in Fig. 4.
We define the following notation: ¥, is the estimated vehicle
velocity over ground; v, is the estimated velocity through
water; 17}; is water velocity in depth bin ¢; 2{ is the measured
water velocity from DVL shear bin j at time ¢. All velocities
are relative to an East-North-Up (ENU) reference frame. We



accumulate shear measurements in a water column matrix,
W, that represents N equal size depth bins and stores the last
K current velocity measurements and associated timestamps,
t, for each depth bin,

W: '.' .

@Z = [Umvruvuat]

Velocity measurements from the DVL are corrected for sound
speed based on CTD measurements recorded at 1 Hz, and
are then transformed to an ENU reference frame using
approximately synchronised AHRS measurements recorded
at 10 Hz before being stored in the water column matrix. The
DVL generates velocity estimates with an assumed speed
of sound of 1500 m/s. The true speed of sound, SS, is
calculated using Medwin’s Forumula [16],

58 =1449.2 + 4.6 x T — 0.055 * T2 + 0.00029 * T3+ 0
(1.34 —0.01 x T) (S — 35) + 0.016 x D

where T is temperature in °C', D is depth in meters, and S is
salinity in parts-per-thousand. DVL velocity measurements
are then scaled as Uscaled = Uoriginal * 1500/5S. The DVL
velocity measurements are recorded with respect to an in-
strument frame that is aligned to the vehicle with Y-forward,
X-right, and Z-down, and the AHRS provides measurements
in a globally referenced maritime convention frame that is
East-North-Down. Thus, DVL velocity measurements are
transformed from the instrument frame I to the global ENU
frame G using the transform

RY = R.(—¢)R.(0)Ry(9) 2)

where Ry(¢), R;(0), and R.(—1) are the rotation matrices
for AHRS measured roll, pitch, and yaw respectively. We
note that the DVL measures water lock velocities with
respect to the sensor, as though it were stationary, while
bottom lock velocities are measured with respect to the
seafloor. Thus, water lock velocities must be negated to
measure the vehicle velocity with respect to the water.

2) Water Column Initialization from Surface Drift: As the
vehicle drifts on the surface before a dive, DVL measured
water column bin velocities are accumulated in a surface
shear matrix, Wy, that stores the latest 1000 measurements
down to the max bin range, n, of the DVL, these shear
velocities are relative to the drift velocity of the vehicle.
When the vehicle begins a dive, the first and last GPS fixes
during the drift period are used to estimate the drift velocity,
74, and the velocities of the first n water column bins, W™,
are estimated by taking the median value of the shears stored
in Wy and adding 74,

w" = median(w’) + vy |i=1:n (3)

All K entries of the first n rows of the water column matrix
are initialized with these velocity estimates, with associated
timestamps set to the start time of the dive,

1 1

w w

3) Water Column Profiling and Odometry Without Bottom
Lock: As illustrated in Fig. 4, when there is no bottom lock,
velocity over ground, ¥g4, is estimated as the sum of the
vehicle velocity through water, v,,, and the velocity of the
water column at the current depth bin, ¥¢. The velocity of
the water column at bin ¢ is estimated as

v = median ([0} ;¢ | t < tiresh)) 4)

where tqesn Sets a time window before which shear mea-
surements are considered stale (we set a time window of 30
minutes). We note that a median filter is chosen for empirical
reasons, as it is known to be more robust than the mean filter
for the random noise characteristic to acoustic measurements.
We also note that when very few measurements (< 20) are
recorded within the time window for the target depth bin, the
time window is discarded and all available measurements in
the matrix are used to estimate the velocity. When the vehicle
is descending, v,, is estimated from the smoothed velocity
(windowed average of last 5 measurements) of the first DVL
bin with current correction. When the vehicle is ascending,
Uw, 18 estimated in the same manner but from the second
DVL bin, allowing new shear values to accumulate from the
first bin,

- - s1 it
{descendmg, Dy = mean(z},_5) — V%

. _ | ¢ 5
ascending, ¥, = mean(zZ,_5) — viT2 ©®)

New water bin velocities are estimated by subtracting the
estimated velocity through water from the DVL shear mea-
surements,

,u—)z-l-l:i-i-n _ ztl:n _ @w (6)
The water column matrix is updated by shifting over old
measurements in all observed bins, except for the bin used
to estimate velocity through water for the current time
step, and appending the new DVL measurements. Note that,
although not reflected in the equation below, we only add
new measurements to an observed bin in the matrix if it
passed a magnitude filter. In our field trials, the maximum
absolute velocity of any water bin was set to 1 m/s, and the
maximum velocity difference between the bin of the vehicle’s
current depth and the velocity of a measured shear bin was
set to 0.2 m/s.

i =2:n (descending)
i =1,3:n (ascending)

W' = [QD%,-" >w}(7wi]{ (7)

The odometry update step is then given by



Dt = Pp—1 + Vg x At

8
At, = At, + At ®

where p; is the updated pose estimate of the vehicle, At is the
time since the last pose update, and At, is the accumulation
of the time the vehicle has spent without bottom lock since
the last pose correction (described below).

4) Water Column Update and Odometry with Bottom
Lock: When the vehicle is in range of the seafloor, the
DVL provides an absolute bottom lock velocity over ground,
Upg. The estimated vehicle velocity over ground, 7, is also
calculated as described above from the estimated velocity
through water and water column velocities. The velocity
error, Ve, between 4 and 7, is accumulated as a running
average while the vehicle maintains bottom lock,

C=C+1

_ _ 1, _ _ )

Verr = VUerr + 6(('Ubg - Ug) - 'Uerr)
where C is a running counter of the number of bottom lock
measurements. Note that for inclusion in the velocity error
estimation, bottom lock velocities are first filtered to have a
reported velocity error of < 1 cm/s and the vehicle altitude
must be greater than 6 m to prevent poorly conditioned
measurements. When enough velocity error measurements
have been accumulated (we set this threshold to 30), a pose
correction, P, is estimated. If it is the first pose correction
of the dive, it is assumed that the GPS measured drift is
the primary error source, and the pose error is estimated by
assuming the velocity error has been approximately constant
over the duration that the vehicle was without bottom lock. If
it is not the first pose correction (GPS drift error has already
been corrected), then it is assumed that the error velocity has
accumulated regularly due to bias and noise and is evenly
distributed across observed water column bins since the last
pose correction, where B is a counter of the number of water
column bin changes since the last pose correction.

Ote = Ate/B; 6Uerr = Uerr/ B

Ist correction, Peryr = Verr * At

Derr = ZzB;l(Z * 0Verpr * 5te)
= 1B(B+1) % 60eyy * 6tc

2

(10
else,

Following a pose correction, all water column measurements
made since the last error correction, t.ef, are adjusted by
the velocity error, and the velocity error is reset.

wzzwz+@err|t>trefaZ:1K

_ = (11
C =0; Verr = 0; tref =1
The odometry update step is then given by
pose correction, D¢ = Pr—1 + Upg * Al + Derr
e _ (12)
else, Dt = Pr—1 + Upg * At

Note that the bottom lock odometry update step is only used
if the reported velocity error is < 5 cm/s, otherwise the
odometry step without bottom lock, described previously, is
used.

IV. EVALUATION

We conducted field trials in Buzzard’s Bay, MA, on
October 6, 2022, and in Puerto Rico on November 20, 2022
(Fig. 6). For Buzzard’s Bay, we configured a shallow yo-
profile mission with a dive to depth of 11 m or altitude of
5 m (whichever is most conservative) and a climb to depth
of 3 m with a target dive and climb pitch of -/+ 5°and a
buoyancy pump volume control range of +/- 150 cc. For
Puerto Rico, we configured a buoyancy pump controlled drift
at depth (bathtub-profile) mission, with a target depth of 6 m,
a target pitch of 0°, thruster activated at full power while the
vehicle is in a stable hover, and a buoyancy pump control
range of +/- 250 cc.

TABLE I: Analysis of the DVL-Odo performance compared
to the AUG internal localization during field trials in Puerto
Rico (PR) and Buzzard’s Bay in Cape Cod, Massachusetts
(BB). Performance is reported for each dive as the absolute
distance error in meters between the estimated position when
the vehicle surfaces and the first GPS fix. Also reported is
the total lateral distance traveled (dist) and, in parentheses,
the percentage error of this distance traveled. * indicates no
bottom lock was available for the dive.

Dive  Dist BL NBL DBL VTW GFS
PR1 677 28 (4%) 70 (10%) 48 (7%) 86 (12%) 92 (14%)
PR 2% 566 46 (8%) 47 8%) 48 (8%) 107 (19%) 38 (7%)
PR3 1034 148 (14%) 271 (26%) 148 (14%) 214 (20%) 290 (28%)
PR4 1323 24 2%) 41 3%) 13 (1%) 53 (4%) 629 (48%)
PRS 950 145 (15%) 141 (15%) 154 (16%) 173 (18%) 389 (41%)
PRG6 961  65(7%) 2320 (242%) 34 (4%) 61 (6%) 490 (51%)
PR7 1078 191 (18%) 708 (66%) 239 (22%) 120 (11%) 705 (65%)
PRS 902 84 (9%) 230 (26%) 148 (16%) 83 (9%) 439 (49%)
PRO 887 136 (15%) 179 (20%) 164 (18%) 62 (7%) S61 (63%)
PR10 490 16 (3%) 80 (16%) 82 (17%) 105 21%) 156 (32%)
"BB1 611 38(6%) 341 (56%) 43 (%) 306 (50%) 674 (110%)
BB2 596 44 (7%) 140 (24%) 55 (9%) 113 (19%) 231 (39%)
BB3 483 44 (9%) 1382 (286%) 170 (35%) 383 (79%) 240 (50%)

During the field trials, we verified that the DVL-Odo
process could be operated in real-time onboard the backseat
driver of the AUG, and we recorded all data streams to the
backseat driver as ROS bag files, for post evaluation. In order
to validate the performance of our DVL-Odo method, we test
it in post by playing back the recorded data streams while
artificially limiting the available data, and we compare the
localization performance against the AUG’s internal localiza-
tion (GFS), which is based on a hydrodynamic flight model
with DAC compensation. We test the DVL-Odo method in
five different ways: first, we test the full method with bottom
lock used whenever available (BL), which is nearly 100% of
the time; second, we artificially remove bottom lock (NBL),
so the method can only use surface drift with water column
profiling in the localization; third, we delay the availability
of bottom lock (DBL) until some time after the start of a
dive (for Puerto Rico, the delay was set to 10 minutes, with
an average dive duration of 20 minutes, and for Buzzard’s
Bay, the delay was set to 30 minutes, with an average dive
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Fig. 5: Plots of sample dives from the Buzzard’s Bay (BB) and Puerto Rico (PR) field trials. BL = DVL-Odo with bottom
lock, DBL = DVL-Odo with delayed bottom lock, NBL = DVL-Odo with no bottom lock (only absolute velocity reference
is surface drift, which is sometimes bad), VIW = DVL-Odo measured velocity through water without any surface drift or
current correction, Glider = built in AUG navigation estimate, GPS Ref = last GPS fix before dive, GPS Fix = first GPS
fix directly after dive. The green highlighted region shows where bottom lock was available along the dive. Plots for BB 1
and BB 2 both demonstrate poor surface drift measurements, which are corrected when bottom lock is used.
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Fig. 6: Locations of field trials. * are waypoints used in AUG
missions.

duration of 40 minutes); fourth, we provide no surface drift
estimate and turn off bottom lock and current profiling,
so the method only localizes from DVL measured velocity
through water (VTW), acting as though the surface and water
column currents are zero. Localization error is measured as
the difference between the odometry estimated position of
the vehicle at the end of a dive and the first GPS updated
position after the vehicle surfaces.

Table I reports the performance of all methods across
all evaluated dives. Performance is reported as the absolute
position error in meters and the percent error of the total
lateral distance traveled. The total lateral distance traveled
is estimated as the integral of the DVL-Odo localization in
the East-North axes with full bottom lock enabled (the depth
dimension is not integrated in the path length). The results
show very good performance for the odometry when full
bottom lock is available (BL), with a percentage distance

traveled error (PDTE) of <20% for every leg, and for most
legs a PDTE of <10%. When bottom lock is removed
(NBL), the localization accuracy is very sensitive to the
surface drift estimate. For certain dives (PR 6 and BB 3),
it is likely that the surface estimate is so poor due to large
(>2m) breaking waves at the shelf margin while the vehicle
was drifting on the surface. However, when bottom lock
is enabled after some delay (DBL), DVL-Odo is able to
correct the localization error, even with bad surface drift
estimates. The localization from only using velocity through
water measurements (VITW) also provides insight into the
surface drift sensitivity. The wind during the Buzzard’s Bay
field trials reached upwards of 15 Knots with reported tidal
induced currents as high as 1 m/s, and the vehicle was
operated during a tidal shift when currents and eddies were
highly dynamic. The wind and surface current in Puerto Rico
on the shelf margin was much lower than in Buzzard’s Bay.
These conditions are reflected in the VITW results, where as-
suming zero drift and water column currents produces overall
good localization, but the same assumptions in the Buzzard’s
Bay data produces generally poor localization. Overall, the
internal AUG localization (GFS) performed worse than any
of the DVL based methods, with few exceptions.

Figure 5 shows localization plots for some selected dives.
The plots of BB 1 and BB 3 show how the delayed bottom
lock is able to correct for bad surface drift estimates. The plot
for PR 3 shows how the vehicle traversed from deep water
without bottom lock across the shelf margin and acquired
bottom lock near the end of the dive, where both the full BL
and DBL methods show corrected localization once bottom
lock is acquired. Across all dives, the vehicle is able to hold a
stable low profile within a 10 m depth band, and the bathtub



mission configuration shows overall better pitch stability than
the shallow yo configuration.

V. CONCLUSION

We have presented an improved method for real-time
DVL-based odometry on AUGs that can compensate for
depth dependent currents, is computationally efficient, and
does not depend on a vehicle dynamics model. We evaluate
our method in field trials, where significant localization
performance improvement is demonstrated for shallow yo-
profile missions compared to the internal AUG dynamic
flight model. This improved localization for AUGs combined
with the capability to operate in shallow depth bands enables
these vehicles to conduct long-range acoustic surveys of
the ocean surface or seafloor, and could even enable long
range survey missions under ice sheets. Future work will
look at extending DVL-Odo into a fully optimized navigation
stack formulated as a factor graph that can fuse additional
sensors, such as the AHRS, into the localization estimate
and provide an associated pose uncertainty. Ultimately, we
aim to demonstrate operation of AUGs under the Arctic
marginal ice zone, enabled by improved localization and
our architecture for adaptive mission control by the backseat
computer through the action server interface to the flight
computer.
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