Partially automated robotic manipulation assisted by a shared autonomy framework for collaborative analysis and input from multiple remote scientists through natural language input and 3D scene understanding for real-time, in-situ elemental analysis Amy Phung, Gideon Billings, Andrea F. Daniele, Matthew R. Walter, Richard Camilli #### Ocean Exploration Methods | Divers | | ROVs | | AUVs | |--|-----|---|-------|---| | + Dexterity+ Low-Cost- Limited by depth- Limited operation time | + + | Dexterity Long operation times Expensive - requires support vessel Participation limited by space on ship | + + - | Autonomy = lower operation cost Support for multiple remote operators Long operation times Intervention remains a challenge | Autonomous Manipulation Challenges ## SHARC: SHared Autonomy for Remote Collaboration ## SHARC: SHared Autonomy for Remote Collaboration SHARC System Overview ### Case study: XRF Sampling # XRF (X-Ray Fluorescence) Output emission spectrum XRF instrument XRF Setup (photo by Amptek) OCEAN SCIENCES MEETING 2022 In-situ XRF Challenges & Prior Work X-rays get attenuated rapidly Schirripa Spagnolo et al. Our Team (unpublished - 2021) Sampling Process with SHARC #### Discussion - Site selection - Data analysis & interpretation - Varied expertise - Tool detection - Low-level control #### Looking Forward ### Thanks For Listening! Email: aphung@whoi.edu Website: amyphung.github.io #### Supported by: