

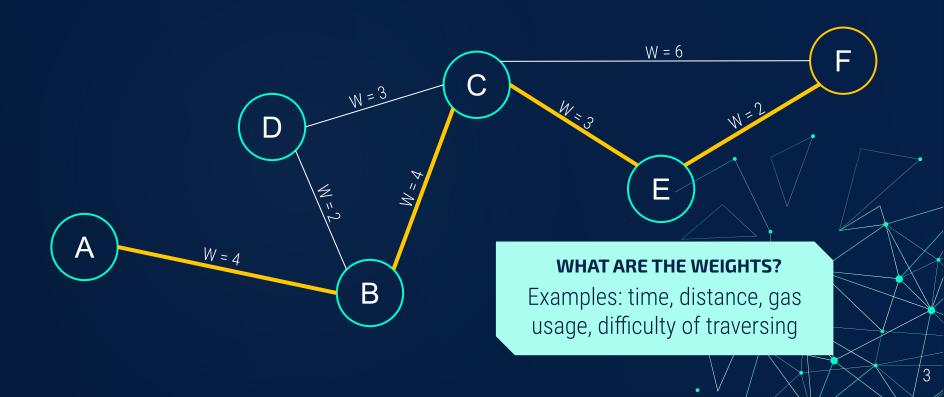
Audrey L, Amy P, Shashank S

Motivation

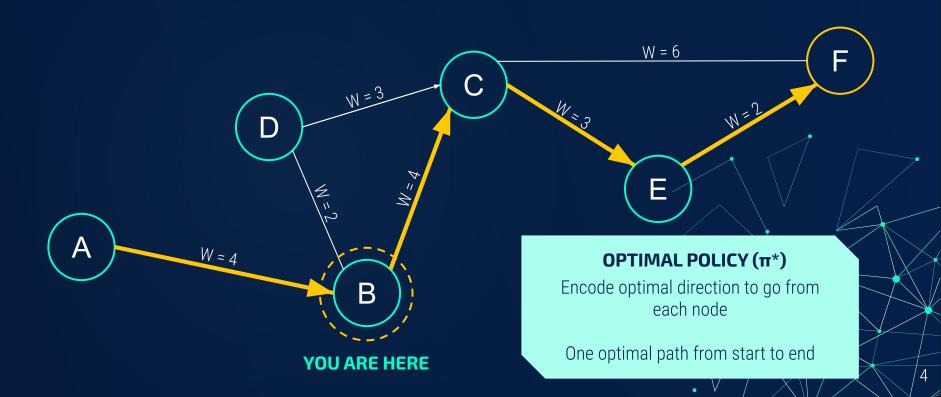
When would we want to find the shortest path?

- Public Transportation Networks
 - Finding a route between two places using public transit
- Traffic
 - Best route to avoid high-traffic areas
- Games
 - Moving around non-player characters

Path Planning: Deterministic Graphs



Path Planning: Deterministic Graphs



Motivation

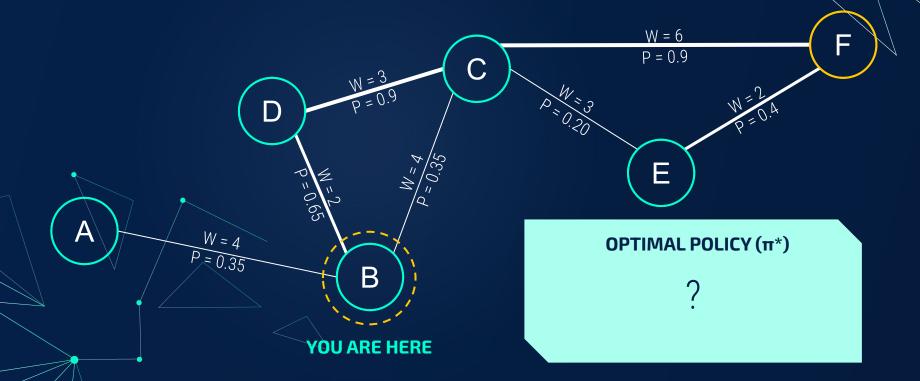
What happens if the edges aren't always there?

- Public Transportation Networks
 - What if a bus arrives +/-5 mins it's scheduled time?
 - O How likely is it that a train gets delayed?
- Traffic
 - What if the traffic changes, or roads get blocked?
- Games
 - What if the player blocks the path?

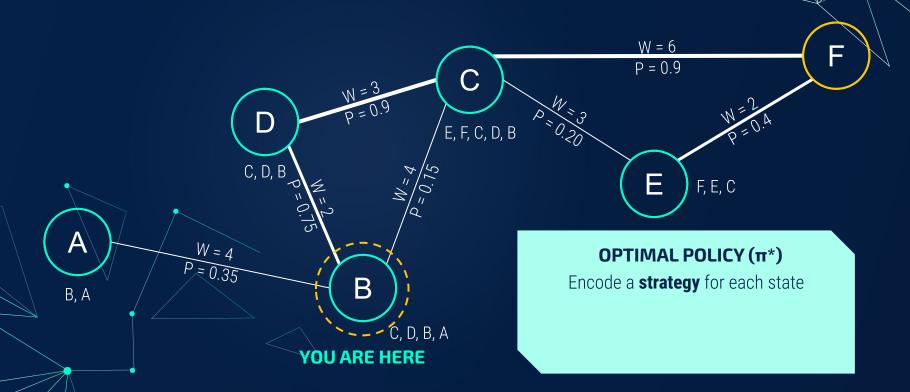
Assign each edge a probability!

(aka create a **stochastic graph**)

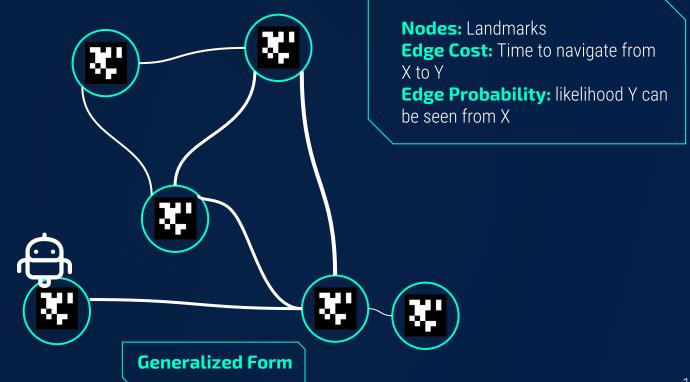
Path Planning: Stochastic Graphs

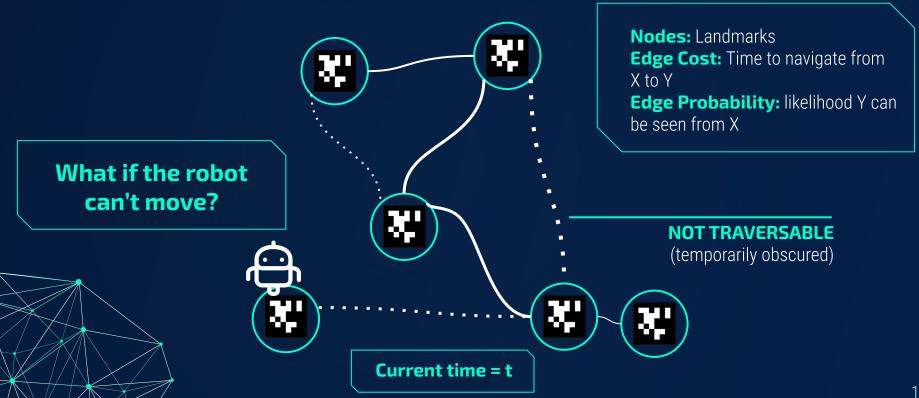


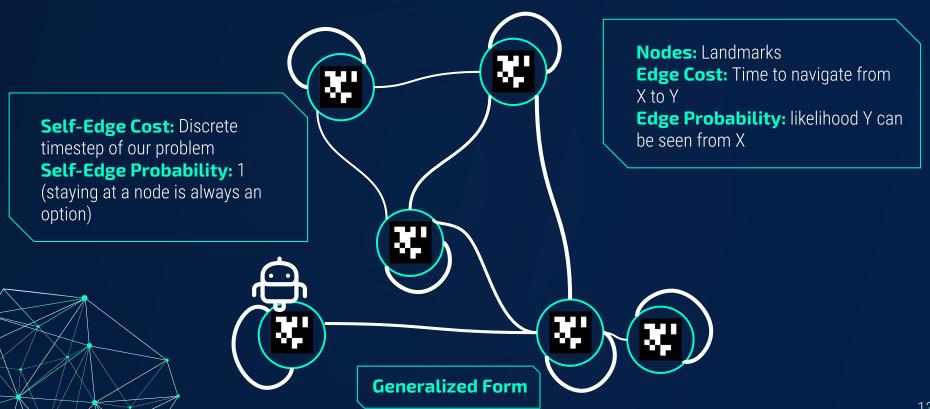
Optimal Policy in Stochastic Graphs

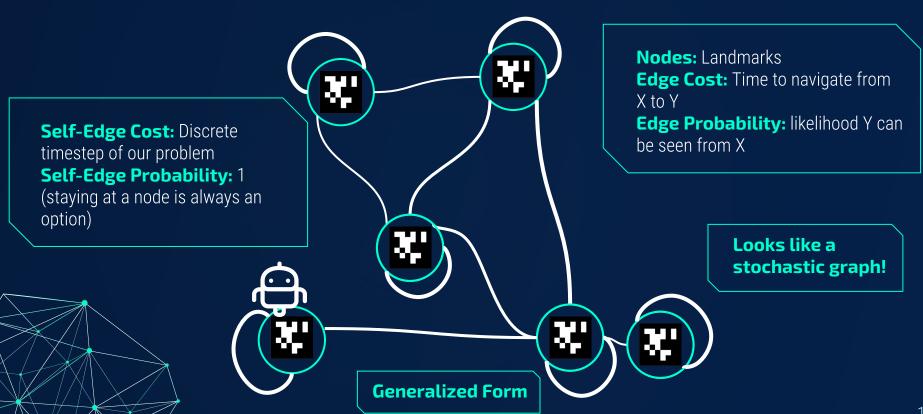


How does this relate to robotics?

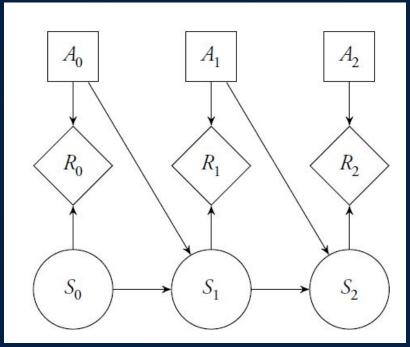


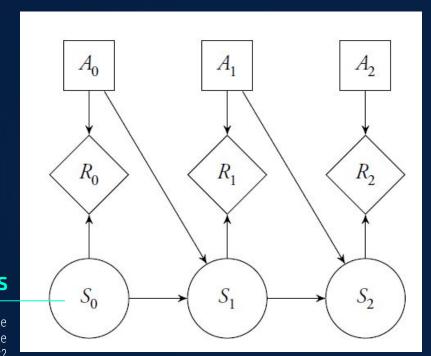






Markov Decision Process (MDP) Overview

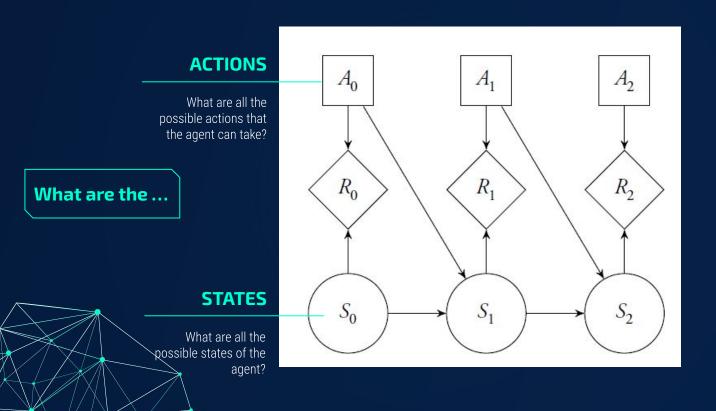


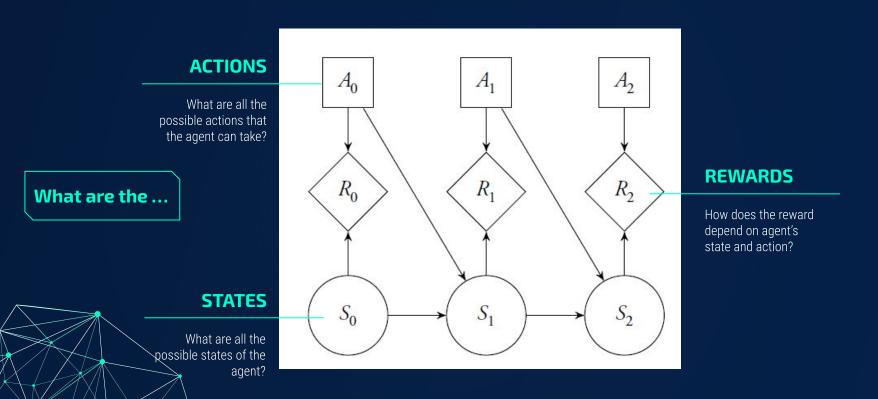


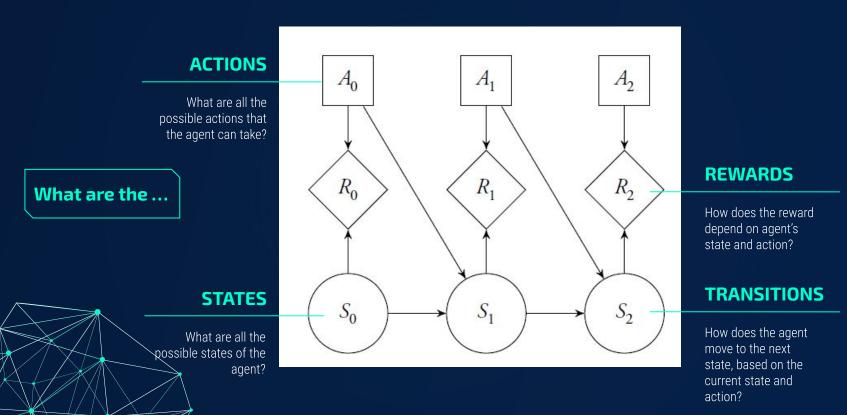
What are the ...

STATES

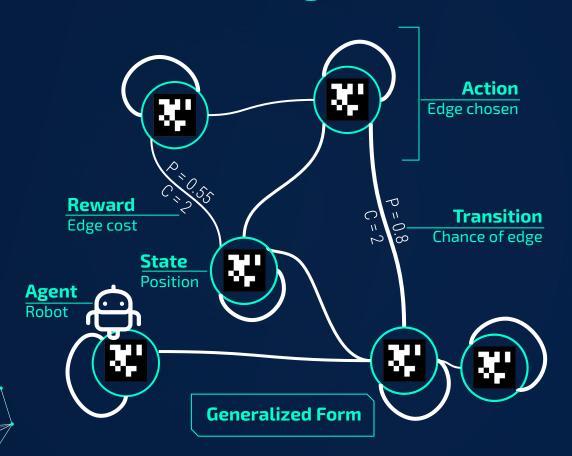
What are all the possible states of the agent?







Robotics Navigation & MDP



Rewards & Utility

Reward

The expected benefit of taking an action at a state

The expected benefit of taking a series of actions along a path

• The sum of rewards gained along the path

Utility

Optimal Policy, Maximum Utility

Rationality

An agent always takes the action that maximizes its reward

Utility and Policy

Utility is the sum of rewards gained by following a policy for some time

Optimal Policy

Under the optimal policy, the utility of following the policy is at the maximum

Optimal Policy: The set of actions that maximizes utility

Utility & Time Horizons

GREEDY

Just considers the reward for the next step.

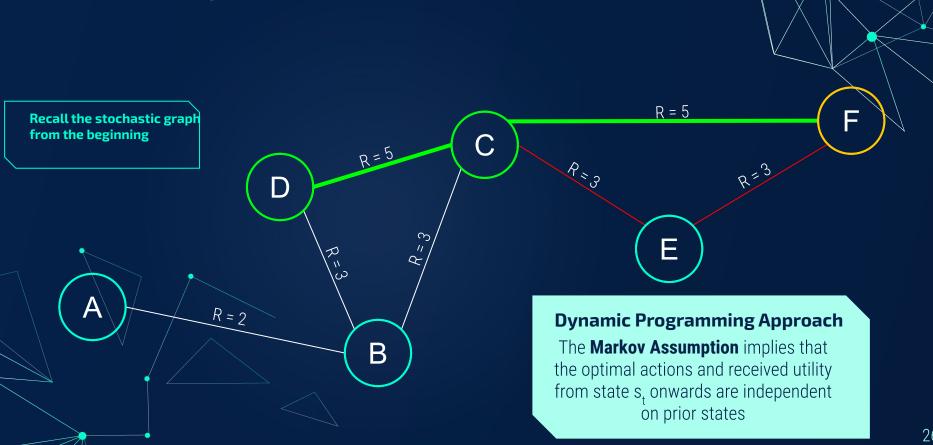
TIME HORIZONS

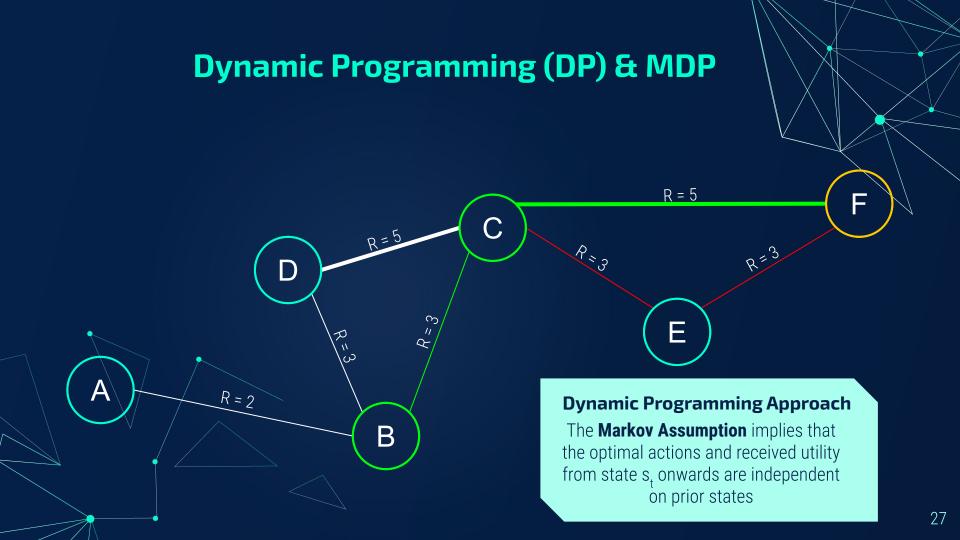
Utility is defined as the sum of the rewards over T timesteps.

INFINITE

Considers the reward for an infinite future.

Dynamic Programming (DP) & MDP





Dynamic Programming (DP) & MDP R = 5R=5... R = 3 D R = 2**Dynamic Programming Approach** В The optimal policy from the current state onwards does not change, regardless of previous states! 28

Transition Probability Matrix

Finding the probability that these nodes are connected

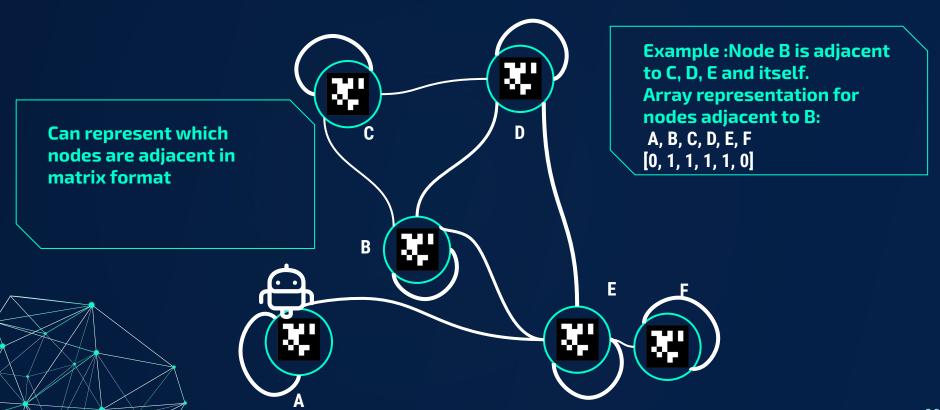
Find the optimal value function to get the optimal policy
OR
Find the optimal policy

Value Iteration or Policy Iteration?

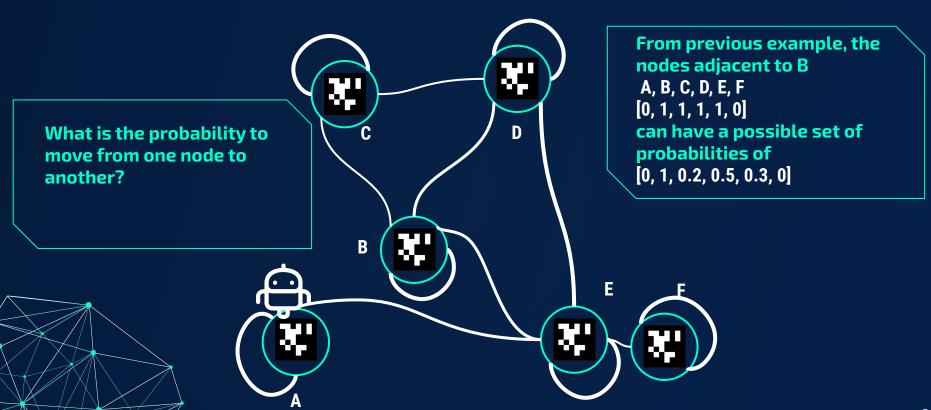
Find the optimal "instruction"

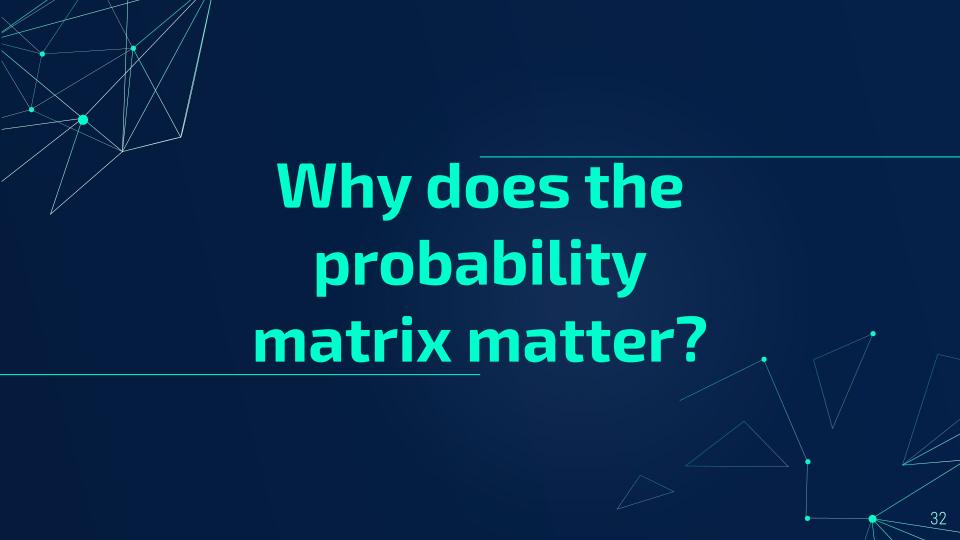
With the optimal value function or policy, we can calculate how the robot chooses where to go based off its current position

Solving - Adjacent Nodes

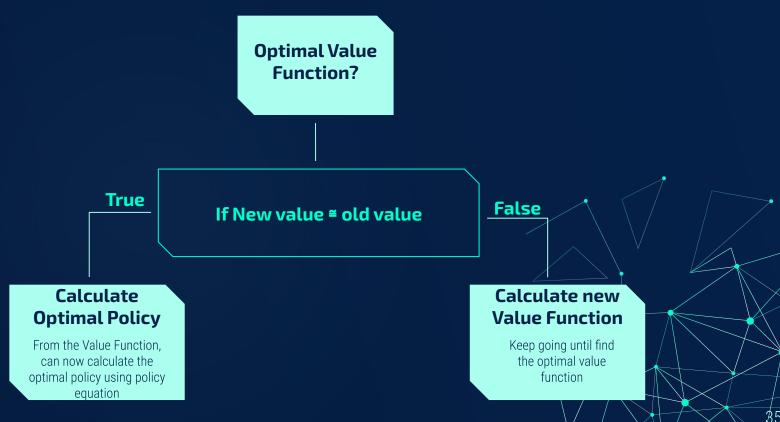


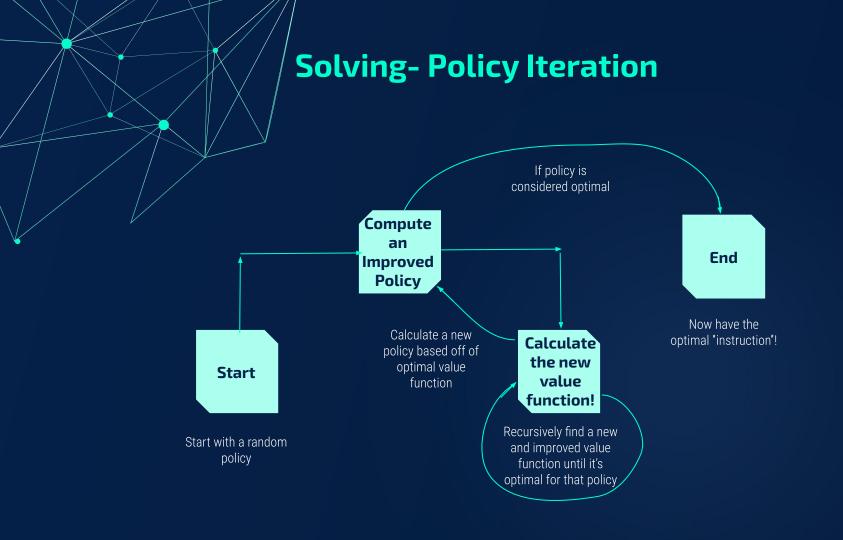
Solving - Probability





Solving - Value Iteration





Comparing Value & Policy Iteration

Value Iteration

Finds optimal value function then computes optimal policy

Evaluates current policy, will compute a new policy from an optimal value function, then uses that function to find a new & improved policy

Policy Iteration

Comparing Value & Policy Iteration

Value Iteration

Only has one loop

Has smaller time complexity

Has two loops

Has larger time complexity, but converges faster

Policy Iteration

