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Motivation

When would we want to find the shortest path?

e Public Transportation Networks
o Finding a route between two places using public transit

e Traffic

o Best route to avoid high-traffic areas

e (ames
o  Moving around non-player characters




Path Planning:
Deterministic Graphs

WHAT ARE THE WEIGHTS?

Examples: time, distance, gas
usage, difficulty of traversing




Path Planning:
Deterministic Graphs

OPTIMAL POLICY (mr*)

Encode optimal direction to go from
each node

~ -

YOU ARE HERE One optimal path from start to end



Motivation

What happens if the edges aren't always there?

e Public Transportation Networks
o Whatif a bus arrives +/-5 mins it's scheduled time?

o How likely is it that a train gets delayed? .
R Assign each edge a
robability!
o  What if the traffic changes, or roads get blocked? P y
o Games (aka create a stochastic graph)

c . What if the player blocks the path?

/N




Path Planning:

Stochastic Graphs

OPTIMAL POLICY (mr*)

?

. YOU ARE HERE
///f: ‘,\‘



Graphs

OPTIMAL POLICY (1r*)
Encode a strategy for each state

/
\ /

~~--TDB,A
YOU ARE HERE




How does this
relate to robotics?




Robotics Navigation

[

THE GOAL

LANDMARKS




Robotics Navigation

POSSIBLE
ROUTES

HIGH
PROBABILITY
(open walkway)

LOW
PROBABILITY
(behind doors)
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E.I

Robotics Navigation

Nodes: Landmarks

Edge Cost: Time to navigate from
XtoY

Edge Probability: likelihood Y can
be seen from X

11



Robotics Navigation

Nodes: Landmarks
Edge Cost: Time to navigate from

XtoVY
Edge Probability: likelihood Y can
. be seen from X
What if the robot B
can't move? .
. NOT TRAVERSABLE

(temporarily obscured)
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Self-Edge Cost: Discrete
timestep of our problem
Self-Edge Probability: 1
(staying at a node is always an
option)

E.I

Robotics Navigation

Nodes: Landmarks

Edge Cost: Time to navigate from
XtoY

Edge Probability: likelihood Y can
be seen from X
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Robotics Navigation

Nodes: Landmarks
Edge Cost: Time to navigate from

Self-Edge Cost: Discrete
timestep of our problem
Self-Edge Probability: 1
(staying at a node is always an
option)

XtoY
Edge Probability: likelihood Y can
be seen from X

Looks like a
stochastic graph!

E.I
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How do we find
the solution?




We can use the Markov
Decision Process (MDP)
framing to help solve it!




Markov Decision Process (MDP)
Overview
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Framing the MDP for the system

STATES

Mible states of the
oo agent?

What are all the
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Framing the MDP for the system

ACTIONS

What are all the
possible actions that
the agent can take?

|VVhatarethe."|

STATES

What are all the
S nossible states of the
oo agent?
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Framing the MDP for the system

ACTIONS

What are all the
possible actions that
the agent can take?

REWARDS

| What are the.... |

How does the reward
depend on agent's
state and action?

STATES

What are all the
S nossible states of the
oo agent?
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Framing the MDP for the system

ACTIONS

What are all the
possible actions that
the agent can take?

| What are the.... |

STATES

REWARDS

How does the reward
depend on agent's
state and action?

TRANSITIONS

‘ What are all the
i possible states of the
agent?

How does the agent
move to the next
state, based on the
current state and
action?
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Robotics Navigation & MIDP

Action
Edge chosen

Reward
Edge cost

0\\
)

W Transition
Chance of edge

State
Position

Agent
Robot

aq:
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Rewards & Utility
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Optimal Policy, Maximum Utility

Utility and Policy -
/>N — Optimal Polic -
=<7 i ’
|
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A\ '(IAM Optimal Policy: The set of actions that maximizes
N

utility | y



Utility & Time Horizons

® ®

GREEDY TIME HORIZONS
- Just consi(;ers the reward Utility is defined as the sum
for the next step. of the rewards over T
timesteps.

INFINITE

Considers the reward for an
infinite future.
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Recall the stochastic grap
from the beginning

|

Dynamic Programming Approach
The Markov Assumption implies that

the optimal actions and received utility
from state s, onwards are independent
on prior states

26



Dynamic Programming Approach

The Markov Assumption implies that

the optimal actions and received utility

from state s, onwards are independent
on prior states




Dynamic Programming Approach

The optimal policy from the current
state onwards does not change,
regardless of previous states!




%o

Transition Probability
Matrix

Finding the probability that these
nodes are connected

Solving the Problem

Find the optimal value function to
get the optimal policy
OR
Find the optimal policy

Value Iteration or
Policy Iteration?

@)

Find the optimal
“instruction”

With the optimal value function or
policy, we can calculate how the
robot chooses where to go based
off its current position
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Solving - Adjacent Nodes

Example :Node B is adjacent
to C, D, E and itself.
Array representation for

Can represent which
nodes are adjacent in
matrix format

nodes adjacent to B:
A,B,C,DEF
lol 1! 1! 1! 1! 0]
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What is the probability to
move from one node to
another?

Solving - Probability

From previous example, the
nodes adjacent to B

A B,CDEF

[0,1,1,1,1,0]

can have a possible set of
probabilities of
[0,1,0.2,0.5, 0.3, 0]
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Why does the
probability

matrix matter?




Because it will help
calculate how good the
current state is!

(and what might happen after taking some action)




Value Iteration

Now we actually start finding the optimal “instruction” for the robot!




Solving - Value Iteration

Optimal Value

Function?

True

Calculate

Optimal Policy

From the Value Function,
can now calculate the
optimal policy using policy
equation

If New value = old value

False

Calculate new
Value Function

Keep going until find
the optimal value
function




Policy Iteration

Similar to Value Iteration EXCEPT....




/ Solving- Policy Iteration

If policy is
considered optimal

Compute
an

Start with a random
policy

Improved
Policy

Now have the

Calculate a new optimal “instruction’!

policy based off of
optimal value
function

Recursively find a new
and improved value
function until it's
optimal for that policy
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Comparing Value & Policy Iteration
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Comparing Value & Policy Iteration
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/ Thanks for
Listening!

Questions?

ﬁes- es used

\ = Robotics applications: Briggs et al. “Expected Shortest
Paths for Landmark-Based Robot Navigation” 2004

= Markov Decision Process Background: Decision Making
Under Uncertainty by Mykel J. Kochenderfer 1980




