
A Comparison of Biogeochemical Argo Sensors, Remote Sensing
Systems, and Shipborne Field Fluorometers to Measure Chlorophyll
a Concentrations in the Pacific Ocean off the Northern Coast of New

Zealand

Amy Phung
Olin College of Engineering

Needham MA, USA

Abstract—Accurately measuring chlorophyll a concentrations
within the world’s oceans is an important part of building our
understanding of its underlying processes and the human impact
on it, and developing tools to do this is an area of active
study. Some methods used today to collect this data include
in-situ fluorometers on board automated Biogeochemical Argo
floats, flow-through fluorometers on board oceangoing vessels,
and ocean color algorithms applied to remote sensing data. While
shipborne field fluorometers are the most accurate of the three
since they can be recalibrated before and after each expedition,
they are limited in spatial and temporal coverage due to their
dependence on expensive oceanographic research cruises. The
Biogeochemical floats help to increase the coverage of fluorometer
data by automating the data collection, but are known to suffer
from sensor drift over time since their fluorometers cannot be
serviced and calibrated regularly. Remote sensing data has by far
the greatest spatial and temporal coverage of the three methods,
but is known to be significantly less accurate in certain regions
and is limited to surface measurements. This study compares
these three measurement methods by analyzing data collected
by a 10AU Field and Laboratory Fluorometer connected to a
flow-through system, data from a Biogeochemical Argo float, and
satellite data from the VIIRS-SNPP dataset in the same region.
The results of comparisons between each of these collection
methods are presented.

Index Terms—Chlorophyll a measurement, remote sensing,
Biogeochemical Argo, field fluorometers, VIIRS-SNPP, sensor
comparison

I. INTRODUCTION

Accurate chlorophyll a concentration measurements are
critical for studying the global carbon, nitrogen, and oxygen
cycles since chlorophyll concentrations are indicative of phy-
toplankton abundance and consequently ocean productivity.
While these cycles have been important since the beginnings of
life on Earth, there’s been a surge of interest in studying these
processes due to ocean acidification and climate change di-
rectly attributed to human activities. Because ocean circulation
is a central component to these critical processes, it is useful
to collect not only surface-level data, but also to measure
chlorophyll a levels at varying depths within the water column
(Behrenfeld and Falkowski, 1997). [1] The ocean plays a major
role in providing us with the air we breathe, the climate we
live in, and the food we consume, so it is imperative that we
develop the necessary tools to understand our impact on it.

Currently, large-scale chlorophyll a measurements are col-
lected via remote sensing with ocean color algorithms applied

to satellite imagery, which is useful for obtaining global data
at regular time intervals (Carder et al., 2004). [2] This data
has numerous applications, and has been extensively used to
monitor and study natural ocean processes such as primary
production, ocean circulation, and harmful algal blooms. On
the human impacts front, this data’s uses range from doc-
umenting the status of coastal water quality to mitigating
effects from major oil spills (Hu and Campbell). [3] Our
heavy reliance on these ocean color algorithms emphasizes the
importance that this data is verified by in-situ measurements,
(Smith et al., 1981) [4] particularly since the accuracy of
chlorophyll a measurements taken by color satellites has been
documented to vary by region and concentration (Hu et al.,
2012). [5] It’s worth noting that this technology suffers from
resolution limitations, is hindered by cloud cover, and doesn’t
capture information at depth since it can only capture infor-
mation within the ocean’s euphotic zone (Kahru, 2016; Lee
et al., 2007), [6], [7] which highlights the need for alternative
measurement methods that can overcome these limitations.

While in-situ measurements are a precise way to measure
chlorophyll concentrations and are important for validating
ocean color algorithms, these discrete measurements only
provide information for infinitesimally small points over the
ocean’s surfaces (Behrenfeld and Falkowski, 1997). [1] Taking
these measurements requires a team of dedicated scientists, a
professional ship’s crew, and a properly equipped oceangoing
vessel to reach remote study sites, causing them to be sparse,
expensive to acquire, and often inconsistent since sampling lo-
cations and timing are dependent on current scientific interests
(Glenn et al., 2000). [8]

An ongoing project to automate the collection of in-situ
chlorophyll a data at varying depths in the water column is the
Biogeochemical Argo float project, where a network of free-
drifting floats are used to take measurements of temperature,
salinity, pH, oxygen, nitrate, chlorophyll, suspended particles,
and downwelling irradiance at depths up to 2000 meters. A
sufficiently large network of floats measuring these additional
variables would vastly expand the potential for global ocean
prediction systems and the management of living marine
resources (http://www.argo.ucsd.edu, Bittig et al., 2019). [9]

While the development of Biogeochemical Argo floats is
a promising start towards chlorophyll a measurements at
depth, it is not without limitations. The floats are equipped



with fluorometers to measure chlorophyll a concentrations,
but since the floats are free-floating, regular retrieval for re-
calibration of its sensors is impractical. Like other long-term
sensor deployments (e.g. moorings or seagliders), the float’s
calibration can be affected by vibrations during shipping,
physical damage to the sensors, or bio-fouling. (Earp et al.,
2011) [10] As a result, these floats are known to have issues
with sensor drift over time. (Chang and Gould, 2006). [11]

Previous studies directly compared in-situ chlorophyll mea-
surements with satellite-derived chlorophyll data and found
systematic error trends of chlorophyll measurements between
different oceans (Szeto et al. 2011). [12] In the Southern Ocean
and other high-latitude waters, Guinet et al. [13] found that
satellite chlorophyll measurements were consistently lower
than in-situ measurements in the same region. Other studies
found that in the Pacific Ocean in mid to high-latitude wa-
ters, chlorophyll concentrations measured by remote sensing
systematically exceeded the values measured by laser fluo-
rometers (Bukin et al., 2001). [14] Several previous studies
highlighted the need for regional ocean color algorithms to
minimize this discrepancy and improve accuracy (e.g. Johnson
et al., 2017; Kahru and Mitchell, 2010; Szeto et al., 2011)
[6], [12], [15] For the Biogeochemical Argo floats, a pre-
vious study suggests satellite ocean color measurements of
chlorophyll can potentially provide some measure of real time
validation and sensor drift (Roesler et al., 2017). [16]

The objectives of this paper are to 1) measure the discrep-
ancy between chlorophyll a data obtained by a shipborne flow-
through fluorometer, via fluorometers equipped on Biogeo-
chemical Argo floats, and via ocean color algorithms applied to
remote sensing data in the Pacific off the coast of New Zealand
2) document the extent of the discrepancy in this particular
region and 3) find trends in the discrepancy to quantify the
extent of the sensor drift of Biogeochemical floats in the area.

II. METHODS

A. Flow-Through Data: Collection

The flow-through data used in this study was collected
by SEA Semester students on board the SSV Robert C.
Seamans along a cruise track off the northern coast of New
Zealand from February 18th to March 12th, 2020. Chlorophyll
a data was collected on-board through two fluorometers – a
10AU Field and Laboratory Fluorometer collecting continuous
surface flow-through fluorescence data, and a Sea Point in-vivo
chlorophyll a fluorometer equipped on a hydrocast carousel
to collect data at depth. This study will primarily focus on
the data collected from the flow-through, but will rely on the
hydrocast data for calibration. To increase the sample size for
the flow-through measurements, the raw fluorescence data was
first pre-processed with a 1-minute binned average before any
further analysis was conducted.

B. Flow-Through Data: Hydrocast Calibration

In order for the data to be useful as a basis for comparison
to other data sources, it needed to be properly calibrated and
converted to standard units. In order to achieve this, 81 water

Fig. 1. Best-fit TLS model relating raw output voltage of the hydrocast
fluorometer to measured chlorophyll a values with sample depth information
illustrated

samples were collected across 29 stations at varying depths
with Niskin bottles and were vacuum filtered for chlorophyll in
dim light. This process produced a chlorophyll a measurement
in units of µg/L for these samples. A linear Total Least
Squares (TLS) model 1 [17] was then fit to these data points
using Python to quantify the relationship between the raw
output voltage of the fluorometer and the actual chlorophyll a
levels in µg/L. The results from this process can be viewed
in Figure 1.

This model was then applied to the rest of the hydrocast
fluorometer data to convert all of the raw measurements to
estimated chlorophyll a values in µg/L.

C. Flow-Through Data: Fluorometer Calibration

Before calibration, the flow-through dataset needed to be
filtered in order to achieve optimal results. For starters, data
collected during the ship’s port stops was removed. Since the
flow-through system is not designed to collect data while the
ship is stationary, the integrity of the data collected during
these time periods cannot be ensured. Points which deviated
more than three standard deviations (> 3σ) from the mean
were considered outliers and were also removed from the set.
To filter out remaining variability, a 31-point median filter was
applied. 2 The results of this filtering can be viewed in Figure
2.

Before moving forward with the analysis, it’s worth taking a
closer look at the data to evaluate whether or not the proposed

1A TLS model, synonymous with Orthogonal Distance Regression (ODR)
for linear models, was chosen over an Ordinary Least Squares (OLS) model
since it better accounts for measurement variance in both the ’predictor’ and
’estimator’ variables opposed to just the ’predictor’

2A median filter was chosen since the variability was relatively infrequent
but resulted in points that significantly differed from the general trend. A
moving average filter would have required averaging more points in order to
achieve the same efficacy, which would’ve decreased the resolution of the data.
31 points were used in the median filter because the ship generally traveled
at a speed of around 5 knots, which meant that 31 points would be looking
at around 2.5 nautical miles’ worth of data. Since the overall objective is to
compare this data to the VIIRS-SNPP dataset with a resolution of 4 kilometers
(approx. 2.1 nautical miles), 31 was a good number to choose to make the
resolution of both datasets similar.



Fig. 2. Graph displaying fluorescence data at various stages of pre-processing.
Data collected during port stops and outliers (points which deviated > 3σ
from the mean) were removed from the dataset. The points left over after
these filters were applied are highlighted in green. A median filter with a
window size of 31 was applied to the points left over to filter out variability.
Points with corresponding hydrocast data that were used for calibration are
highlighted in red.

filtering and data pre-processing methods are acceptable. The
original recorded data is a 1-minute binned average, which
translates to a seawater sample size of between 50 to 600 mL
per data point (based on the recommended flow rate range for
the Turner Designs fluorometer). Considering the small sample
size in conjunction with spatial heterogeneity of seawater
samples (e.g. an algae patch caused by shifting oceanic fronts),
transient periods of high readings when passing through these
regions are expected, particularly since tens of thousands of
1-minute samples will be collected over the course of the
cruise. This expected behavior is consistent with the occasional
sharp voltage spikes observed in the original data (illustrated
by the green and orange points in Figure 2). If left in the
dataset, these spikes would add an unrepresentative skew
towards higher chlorophyll readings since these patches are
not necessarily indicative of general trends in the area. Based
on this examination, we can prudently move forward with the
analysis using the filtered data.

Unlike the calibration process used for the hydrocast data,
calibrating the flow-through by directly comparing the filtered
samples with the flow-through fluorescence data would be
unreasonable due to the fact that most of the water samples
filtered for chlorophyll a were collected at depths significantly
lower than what the flow-through would observe. In lieu of
this, the flow-through fluorescence data was calibrated by
comparing surface hydrocast data after applying the model
from Figure 1 with the voltage of the filtered flow-through
fluorometer during the time closest to when the surface data
was collected. Locations and calibrated values of the surface
hydrocast data is displayed in Figure 3. A comparison between
these data points can be viewed in Figure 4.

The RANSAC algorithm implemented by Pedregosa et al.
[18] was used to identify outliers and fit a linear model to
the data in Figure 4. This process classified one point as an
outlier, which came from the hydrocast station right before the

Fig. 3. Locations and calibrated values of surface hydrocast data points used
to calibrate flow-through dataset displayed on map

Fig. 4. Flow-through fluorescence values compared with computed chloro-
phyll a values from hydrocast surface measurements. A best-fit line computed
with RANSAC describes the relationship between the two sensors after outlier
removal

second port stop. Considering that the hydrocast fluorometer’s
sensing volume is a mere 0.34 mL and the flow-through
sample size is between 50 to 600 mL as previously mentioned,
it is plausible that one or both of these measurements were
based on a seawater sample not representative of the area.
Therefore, we chose to accept the best fit line computed by
RANSAC and omit the outlier from the calibration data set.
The computed model was then applied to the rest of the flow-
through fluorescence data to compute chlorophyll a values
based on the output voltage. The results of these computations
can be viewed in context of each point’s geographic location
in Figure 5.

D. Biogeochemical Float Data

The Biogeochemical (BGC) float data that was used in
this study came from float 5905108 released by the National
Oceanic and Atmospheric Administration’s (NOAA) Atlantic
Oceanographic and Meteorological Laboratory (AOML). This



Fig. 5. Locations and calibrated values of flow-through data points from the
Seamans cruise track displayed on map

float was selected because it was the only float equipped with a
chlorophyll a fluorometer that traveled within the area relevant
to this study based on the floats visible on the BGC Argo web-
site (http://www.oao.obs-vlfr.fr/mapsg/en/). The raw data for
this float was obtained from the US-GODAE GDAC FTP site
(ftp://usgodae.org/pub/outgoing/argo/dac/aoml/5905108/) and
spans a time period between July 29th, 2017 to February 3rd,
2020.

The BGC float data in its raw form is difficult to compare
to satellite data since it is three-dimensional, contrary to
the two-dimensional nature of the satellite data. To reduce
the dimensionality of the BGC data, a chlorophyll value
was computed for each station by integrating the chlorophyll
measurements from the surface to the approximate mixed layer
depth (20 meters) using Ocean Data View, then normalizing
the data in Python. Since this data is recorded in units of µg/L,
no additional calibration or unit conversion was necessary. The
results from this computation for each station can be viewed
in Figure 6.

E. Remote Sensing Data

The remote sensing data used in this study came from the
VIIRS-SNPP dataset available from NASA’s OceanColor Web
(https://oceancolor.gsfc.nasa.gov/l3/order/). The product data
used was from the default chlorophyll algorithm applied over
an 8-day period with a 4 kilometer resolution. Data used in this
paper ranged from July 4th, 2017 (right before the first station
of BGC Argo float 5905108) to March 12th, 2020 (to cover
the last flow-through data point). Since this data is recorded in
units of µg/L, no additional calibration or unit conversion was
necessary. Sample visualizations of this data can be viewed in
Figure 7.

F. Chlorophyll a Measurement Comparison

In order to effectively compare the flow-through and BGC
Argo chlorophyll a data with the remote sensing data, the

Fig. 6. Computed chlorophyll a values from surface BGC Argo data
visualized on a map

Fig. 7. Chlorophyll a values from the VIIRS-SNPP dataset during three
different time periods. Points were downsampled by a factor of 10 to create
this visualization.

data needs to be temporally and spatially synced as much as
possible. To achieve this, a lookup table containing satellite
data was established. For each data point in the flow-through
and BGC Argo datasets, the chlorophyll a value for the nearest
point spatially in the satellite data from the appropriate time
period was recorded.

The Python code used to create the figures in this section
can be viewed online at https://github.com/AmyPhung/chl-a-
comparison/

III. RESULTS

Comparisons between BGC Argo and satellite chlorophyll
a data are presented in Figure 8.

As evident by Figure 8, there is a distinct difference in the
relationship between the BGC Argo and satellite data for lower
and higher chlorophyll a values. When the points are directly
compared to each other, two distinct clusters are visually
apparent due to this difference as illustrated by Figure 9. To
compute these clusters mathematically, a Gaussian mixture
model is used to label each point. 3 A best-fit TLS regression
line is then applied to quantify the relationship between the

3A Gaussian mixture model was chosen over other clustering methods due
to its ability to cluster “stretched-out” data. A good explanation of this can
be found here: https://jakevdp.github.io/PythonDataScienceHandbook/05.12-
gaussian-mixtures.html



Fig. 8. Chlorophyll a data comparison between BGC Argo and remote sensing
collection methods by station.

Fig. 9. Chlorophyll a data comparison between BGC Argo and remote sensing
collection methods directly. Points are colored based on results from using a
Gaussian mixture model for clustering to distinguish between high and low-
concentration points. Best-fit TLS regression lines computed for each cluster
are also displayed.

two datasets for each point the within each cluster. The results
from this analysis are displayed in Figure 9.

To quantify the agreement between the two datasets, the
percent difference between the BGC Argo and satellite datasets
for each point was computed using the following equation

(%D) =
n1 − n2
n1+n2

2

× 100 (1)

where n1 is the BGC Argo value and n2 is the satellite
value.4

4This equation differs slightly from the typical percent difference formula
since there is no absolute value around the difference between n1 and n2. By
keeping n2 as the satellite value, the resulting sign of the percent difference
indicates whether n1 is higher or lower than the value measured by the satellite

Fig. 10. Histogram of points grouped based on the percent difference between
the satellite and BGC Argo data with a bin size of 10%. Points greater than
100% or less than −100% off were grouped with the bins on the edge.

Fig. 11. Chlorophyll a data comparison between flow-through and remote
sensing collection methods by station.

A histogram of the percent differences in the data for each
of the two clusters can be found in Figure 10.

The same analysis can also be used to compare the flow-
through and satellite chlorophyll a data. A comparison of the
values by station can be viewed in Figure 11. For data points
without a corresponding satellite measurement (due to cloud
cover or other reasons), the measurement was dropped.

Similar to the BGC Argo dataset, there is a distinct differ-
ence in the relationship between the flow-through and satellite
data for higher chlorophyll a concentrations. Because of this,
we can once again use a Gaussian mixture model and two
regression lines to characterize the relationship between these
datasets. The results are illustrated in Figure 12.

A histogram displaying the percent differences in the data
for each of the two clusters can be found in Figure 13

The average percent difference for the two datasets are
presented in Table I.

The Python code used to create the figures in this section
can be viewed and online at https://github.com/AmyPhung/chl-



Fig. 12. Chlorophyll a data comparison between flow-through and remote
sensing collection methods directly. Points are colored based on results from
using a Gaussian mixture model for clustering to distinguish between high
and low-concentration points. Best-fit TLS regression lines for each cluster
are also displayed

Fig. 13. Histogram of points grouped based on the percent difference between
the satellite and flow-through data with a bin size of 10%. Points greater or
less than 100% off were grouped with the bins on the edge.

a-comparison/.

IV. DISCUSSION

Overall, there was generally good agreement between data
points of different sources in relatively low chlorophyll a
concentrations, but data collected in areas with high chloro-
phyll a concentrations differed significantly. It’s worth not-
ing that the edge between the high and low concentration
clusters occurred at approximately 0.2 µg/L in the BGC
Argo dataset and at approximately 0.15 µg/L in the flow-
through dataset. This observation may be an artifact of how
the chlorophyll a concentrations are computed with the remote
sensing data. The default chlorophyll a algorithm used to
compute the data used in this paper employs the standard
OC3/OC4 (OCx) band ratio algorithm merged with the color
index (CI) of Hu et al. (2012). The current implementation
transitions between CI and OCx at 0.15 < CI < 0.2 mg/m3

(https://oceancolor.gsfc.nasa.gov/data/viirs-snpp/), which is in-
teresting because that’s precisely where the trends between the
datasets change.

TABLE I
AVERAGE PERCENT DIFFERENCES FOR DIFFERENT SUB-SETS OF DATA

Dataset % Difference
Flow-through/Satellite (Low concentrations) 10.10%
Flow-through/Satellite (High concentrations) −30.60%

Flow-through/Satellite (Overall) −6.06%
BGC Argo/Satellite (Low concentrations) 27.87%
BGC Argo/Satellite (High concentrations) 89.95%

BGC Argo/Satellite (Overall) 60.58%

A. Comparisons at Low Concentrations

For both the flow-through and BGC Argo datasets, the
agreement with reported chlorophyll a levels from the satellite
is much better and more consistent in areas with lower
concentrations. The low-concentration histogram distribution
for both datasets look relatively similar to each other, but the
BGC Argo dataset is centered at 30% while the flow-through
dataset is centered at 10%.

At low concentrations, there is a remarkably strong linear
relationship between the BGC Argo and satellite data, as evi-
dent by the blue best fit line in Figure 9. Although the average
percent difference between the flow-through and satellite data
at low concentrations (10.1%) is lower than that of the average
difference between the BGC Argo and satellite data (27.87%),
the flow-through’s linear relationship with the satellite data is
not as strong. This is evident by the variability in the data
around the blue best-fit line in Figure 12.

B. Comparisons at High Concentrations

At high concentrations, both datasets don’t match up with
the satellite data particularly well. The BGC Argo data con-
sistently reports higher values than the satellite data reports,
with the average percent difference between the data at
89.61% as reported by Table I. However, there is still a
good linear relationship between the datasets, as illustrated
by the best-fit line in Figure 9. Meanwhile, the flow-through
data consistently reports lower values than the satellite does
at high concentrations, with the average percent difference
between the data at -29.47% as reported by Table I. Unlike
the BGC Argo dataset, however, there is not a great linear
relationship between the flow-through and satellite data at high
concentrations as evident by Figure 12.

In the first few hours of the flow-through dataset, there is
a notable spike in the satellite chlorophyll a values as evident
in Figures 11 and 12 as the ship passed through the Hauraki
Gulf. A multi-year study done in 2013 by Pinkerton et al.
[19] that focused on comparing in-situ measurements with the
MODIS-Aqua (the predecessor to VIIRS) satellite data found
that “long-term median concentrations in inshore regions are
higher in the satellite data set by about a factor of 2.” Similar
to the observations in that study, the significant discrepancy
between our observed flow-through and satellite measurements
in that region may be partly due to the flow-through data
missing brief productivity events that the satellite would’ve
incorporated into its measurements. However, more data from



this particular region over a wider timescale is needed to make
more conclusive claims about VIIRS data in this region.

C. BGC Data Quality Over Time

Although previous studies have documented sensor drift
in some BGC Argo floats over time, it’s worth noting that
there was no significant observable drift in the float used in
this study past what has already been accounted for. At high
concentrations, there is a notable divergence in the satellite
and BGC Argo datasets as Figure 8 illustrates, but this trend
does not appear to change over time. The low-concentration
best-fit line computed for the data in Figure 9 also features a
y-intercept value rather close to 0, which suggests that there
is not an offset caused by sensor drift in the data.

V. CONCLUSION

Across the flow-through, BGC Argo, and VIIRS-SNPP
datasets, there was generally good agreement between re-
ported chlorophyll a values in lower concentrations (below
approximately 0.15-0.2 µg/L), but in higher concentrations
the data between each of the sources differed significantly.
In low-concentration areas, the flow-through and BGC Argo
datasets both generally reported values a higher than values
reported by the satellite, with average percent differences
being 10.4% and 27.86% respectively. The BGC Argo dataset
had good linear relationships with the satellite data in both
low and high concentrations, though it’s worth noting that
the relationship was different for each concentration level.
While the flow-through dataset generally had better agreement
with the satellite data than the BGC Argo dataset did, it
had poorer linear relationships with the satellite data at both
low and high concentrations. At high-concentrations, the BGC
Argo data tended to report values significantly higher than
the recorded satellite values while the flow-through tended to
report significantly lower values.

To continue this study, incorporating data from BGC floats
in a wider region and adding in data from floats as they’re
introduced into the area would allow for a greater understand-
ing of the variations between different floats and provide more
data points to work with. Incorporating flow-through datasets
from previous cruise tracks in the same region to expand the
distribution in time for the flow-through data would also be a
good next step.
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J. Ras, S. Drapeau, N. Haëntjens, and M. Barbieux, “Recommendations
for obtaining unbiased chlorophyll estimates from in situ chlorophyll
fluorometers: A global analysis of wet labs eco sensors,” Limnology
and Oceanography: Methods, vol. 15, no. 6, pp. 572–585, 2017.

[17] P. Boggs, “Orthogonal distance regression,” 1989.
[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] M. Pinkerton, S. Wood, J. Zeldis, and M. Gall, “Satellite ocean-colour
remote sensing of the hauraki gulf marine park,” Waikato Regional
Council, Tech. Rep., 2013.


